AD-A258 832
R A

AFIT/GCS/ENG/92D-22

DTIC |

X-AAARF

An X Window Based Version " T
of the
AFIT Algorithm Animation Research Facility

4

pasesie B

THESIS

Charles R. Wright, Jr
Captain, USAF

AFIT/GCS/ENG/92D-22

=
=8
= |
=0
=0
=
= 3 Approved for public release; distribution unlimited
BEST
AVAILABLE COPY

93 1 04

ELECTE
JAN 0 6 1993

02%

AFIT/GCS/ENG/92D-22

X-AAARF
An X Window Based Version
of the

AFIT Algorithm Animation Research Facility

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology BTI6 QT ALTTY NSPECTED B

Air University

i r
In Partial Fulfillment of the Accesion Fo
NTIS CRA& g
Requirements for the Degree of DTIC TAB
. . Unannounced ()
Master of Science in Computer Science Jusiification

By

istribution/
Charles R. Wright, Jr, B.SE.E Distriby

Availability Codes
Captain, USAF

Availl and]or
Dist Special

- \
December, 1992

Approved for public release; distribution unlimited

Acknowledgements

This thesis would not have been possible without the support and understanding of my best

friend, my wife Amanda. That is a debt I will happily pursue the rest of my life.

Of course, Dr. Lamont deserves “extra credit,” for his tolerance and understanding, and for

laughing at my jokes and agreeing with nearly everything I said — no one else does that.

Special thanks to my friends in the Software Engineering sequence for allowing me into their
presence and onto their workstations, and especially for so graciously tolerating an “old” infidel.

(Thank you, Mary Anne, for sharing my views on the importance of ice cream.)

Thanks to Lt Col Amburn for letting me “keep my fingers in” and for answering questions

out of turn.

Thanks also to Paul Chase for his gallant efforts at keeping me honest with his unending
stream of questions and sometimes ecletic observations on AAARF. No one can understate the

obvious better than an Aussie.

I must also acknowledge the contributions made by my sister Lydia, for keeping the welcome

mat out, and her husband Joe, who always kept a seat open in the canoe, regardless of the weather.

Finally, Watson deserves honorable mention because he was always ready to play, no matter

what time of night I wandered in.

Charles R. Wright, Jr

Table of Contents

Page

Acknowledgements Lo I
Table of Contents e i
List of Figures e vii
Abstract vili
I. Introductiono 1-1
1.1 Background 1-1

1.1.1 Algorithm Classes 1-2

1.1.2 Algorithm Classes Supported 1-3

1.1.3 Animation Support o L 1-3

1.1.4 The AAARF Design 1-3

1.1.5 AAARF History 1-4

1.2 Problem 1-4

1.2.1 Outdated GUL 1-4

1.2.2 Parallel Algorithm and Performance Animation 1-5

1.2.3 Parallel Architectures 1-5

1.3 Scope 1-6

1.4 Assumptions o 1-6

1.5 Overviewo 1-7

1.6 Summary 1-7

1. Requirements Analysis 2-1
2.1 Introduction L 2-1

2.2 AAARF Status 2-1

i

2.3 Summary of Candidate Tasks

2.4 Summary of Current Knowledge
2.4.1 Animation Systems - A Sampling of Representative Systems
2.4.2 Parallel Performance Animation Systems and Techniques
243 Conclusion
2.44 XWindows GUI Systems

2.5 Requirements
2.5.1 GUI Requirements

2.6 Summary

III. AAARF Operational Maintenance

3.1 Introduction
3.2 Problems with the AAARF System, ...

3.21 AAARFinGeneral

3.2.2 Parallel Computer Performance Monitoring

3.3 Recommended Changes

3.3.1 AAARF in General

3.3.2 Parallel Computer Performance Monitoring

3.4 Implementation and Analysis of Results

3.4.1 AAARF in General

3.4.2 Parallel Computer Performance Monitoring

3.5 Summary

IV. X-AAARF - Design and Implementation

4.1 Introduction

4.1.1 A Prototype X-AAARF

4.1.2 SunView in an OpenWindows Environment

4.2 Selecting a Replacement Graphical User Interface (GUT) - XView

Page
2-3

2-4

2-14
2-15

2-15

A-1
4-1

4-1

V. Concl

Appendix A.

4.2.1 Analysis of X Window Development Enviornments
4.2.2 Motivations for Choosing XView
423 ACloser Lovkat XView
4.3 GUIJ Replacement - Design, Implementation and Results
4.3.1 Replacement Strategy oL
4.3.2 Test Strategyo
4.3.3 Design/Implementation Issues
4.3.4 The AAARF Main Process
4.3.5 The Common Library
4.3.6 The Array Sort Class
437 The PViews Library
438 General Results. L.
44 Summary B
usions and Recommendations
5.1 Conclusions o
5.2 Recommendations L 0L
5.2.1 AAARF Maintenance, ..

5.2.2 AAARF Training

5.2.3 Individually Windowed Views

5.2.4 AAARF as a Classroom Tool - The Client Programmer Interface

5.2.5 A Formal Specification Language for Algorithm Animation

5.2.6 AAARF Responsibibity

5.2.7 The Future of AAARF

A BRIEF Discussion of X

Page
4-3
1-8

4-9

4-19
4-21
4-24
4-28

4-29

Page

Appendix B. A Simple Example of PRASE Instrumentation - The Ring Program . B-1
B.1 Introduction B-1

B.2 Overview B-1

B.3 Running the Animation B-2

B.4 Bailing Yourself Out L B-7

B.5 Instrumenting a Simple Cube Program B-38

B.5.1 Instrumenting the host Program B-8

B.5.2 Instrumenting the node Program(s) B-9

B.5.3 Changes to the Makefile B-11

B.6 Source Listings B-12
Bibliography BIB-1
Vita .. oL VITA-1

vi

Figure

3.1.

4.1.

4.2.

4.3.

4.8,

5.1.

List of Figures

Network Connections for Automatic Mode. In manual mode, the fork/erec link
between server and algorithm is not present. The algorithm must be started man-

ually, . oo

Programmer view of the complete X Window Systern [31:12]

The AAARF modular design. Each outer box is a self contained system with it's

own window based interface. Inner boxes are separate processes.

(a) Original structure of the Main window. Each window is a separate window.
(b) Original structure of ‘he Algorithm window. The view windows are contained

within the Algorithm window. The remaining windows are separate windows. . .
New structure of the Algorithm window.
SunView Master Control Panel for the ArraySortsclass.
XView Master Control Panel for the ArraySortsclass.
Master Control Panel for the Parallel Performance Class.

Parallel View Options panel.

Proposed environment for the development of a formal specification language for

algorithm animation.

vil

Page

3-4

4-4

4-13

AFIT/GCS/ENG/92D-22

Abstract

Algorithm animation is the process of graphically representing the state changes which occur
during the execution of the control structure (algorithm) of computer programs. Rather than
simply viewing program execution as changes in the contents of static data structures, algorithm
animation presents program execution as a series of state transitions. This is done by associating
specific decision points, and their resulting actions during execution, with corresponding changes
in the graphical representation of the algorithm’s data structure. In effect, algorithm animation
attempts to show the why (algorithm execution) that is associated with the whatf and how (changes

in the contents of the data structures).

The AFIT Algorithm Animation Research Facility was developed by the Air Force Institute
of Technology (AFIT) as a teaching aid for data structures and algorithm design of sequential
processes. However, AAARFs unique design makes it particularly suitable for the animation of
algorithms running on remote systems. In particular, an extensive set of parallel performance
animations has been developed for the Intel iPSC/2 Hypercube for parallel program analysis and

performance optimization.

The AAARF system was originally developed using the Sun Microsystems” SunView ¥ win-
dowing system. Recent advances in Graphical User Interface (GUI) technology combined with Sun’s
adoption of the X Window System as their workstation window environment, has necessitated the

replacement of AAARF's GUI with a modern, X-based user interface.

This report describes the GUI replacement process. starting with selecting a GUI toolkit,
designing and implementing the new user interface. testing. and finally the results of implementing
the new user interface. Also included is a discussion of several changes/enhancements to AAARF

which were necessary hefore the GUI replacement process began.

Vit

X-AAARF
An X Window Based Version
of the

AFIT Algorithm Animation Research Facility

[. Inlroduction

Algorithm animation is the process of graphically representing the state changes which occur
during the execution of the control structure {algorithm) of computer programs. Rather than simply
viewing program execution as changes in the contents of static data structures, algorithm animation
presents program execution as a series of state transitionus or Inferesting Events (I1F) [4:13, 56-57].
This is done by associating specific decision points. and their resulting actions during execution.
with corresponding changes in the graphical representation of the algorithm’s data structure. In
effect, algorithm animation attempts to show the why (algorithi execution) that is associated with

the what and how (changes in the contents of the data structures).

Algorithm animation is useful in the development of new software, as well as the effective use
of existing software. It is also an effective aid in teaching algorithm design and understanding the
behavior of existing algorithms. Recently. algorithmn animation techniques have been adapted for
use with parallel computers [29] as an aid in understanding the complex inter-relationships that
exist between parallel computer architectures, and the decomposition and partitioning of algorithms

for execution on these machines,

1.1 Background

The AFIT Algorithie Animation Facility (AAARF) [4. 29] is a general purpose visualization

tool for the animation of algorithms. The applications for AAARFE are education. and analysis and

1-1

debugging. To support these applications AAARF provides for two classes of users: cnd-users, and

client-programmers [4:1][2:6].

In the educational mode. end-users interact with animations developed by client-programimers
for the purpose of studying and analyzing the execution of a particular algorithm or class of al-
gorithms. In the client-programmer mode, the users are. typically, the chient-programmers then-
selves. Client programmers use AAARF for two purposes: the development of new classes for
end-users, and for debugging and analysis. AAARF provides two user interfaces: a window based.
mouse driven interface for end-users, and a function and library based software interface for client-
programmers. AAARF is written in C [12] and uses the XView (X Window-System-based Vi-
sual/Integrated Environment for Work~tations) [10] user-interface toolkit from Sun’' Microsystems.
running under OpenWindows™™ [27]. AAARF currently runs on Sun SPARCstation?2 workstations.

AAARF supports the animation of processes running on both serial and parallel architectures.

1.1.1 Algorithm Classes AAARF partitions algorithm space into classes. with cluss mom-
bership being defined as a function of the transformation process an algorithm performs while
operating on an input set and producing an output set. (This classification scheme 1s defined
formally [4:11-14].) This classification scheme car be applied broadly, as in the case of integer
array sort algorithms, or niore narrowly, as a measure ol the effectivencss and efliciency of different
unplementations of a particular algorithm. In the broad sense. algorithms from the same class are
defined to operate on the same input, and produce identical outputs, albeit by different means. In
the narrow case. the same algorithm operates on an input, producing two kinds of output which
are of interest: that which is specific to the algorithm {and s associated “broad”™ class) and im-
plementation specific information (usually architecture related). from which measures of efficiency
and effectiveness can be made. In the narrow case. interest is in the architecture specific infor-
mation because it allows the comparison of various algorithm implementations. This is important

in the case of parallel computer architectures, since an algorithm may be implemented in a vari-

ety of ways, with the preferred implementation betng determined only after exhasutive empirieal
testing. Clearly, this classification scheme 1s not exclusive, since comparisons can be made across

implementations of algorithms from within the same class.

1.1.2 Algorithin Classes Supported AAARY curpently supports three serial algorithm
classes: 1) integer array s .rts (with nine sorting algorithms). 2) tree traversal, and 3) dynamic tree
searching, with an implementation of the traveling salesman problem as an example algorithni. For
parallel architectures, AAARY provides a set of 11 animations for performance monttoring of the

Intel 1PSC/2.

1.1.32 Anunation Support AAARF provides a broad spectrum of support for algorithm an-
imation. As stated above, the AAARF end user interface is window based and mouse driven. These
kinds of interfaces are genericly referred to as Graphical User Interfaces. or GUls. The AAARF
GUI provides for the display of multiple views of algorithms as well as the simultancous display
of multiple algorithms. The ability to save and restore the current configuration is also provided,
along with an animation record capability for playback at a later time. A full range of algorithm
and configuration coutrol facilitics are alse provided, such as variable speed control, breakpoint
selectors, view configurations, ete [8]. The client-programmer interface is a rigid. parameterized
software interface. It consists of a set of predefined functions which the programmer “lleshes out”
along with a collection of AAARFE library routines [5]. Client programmers do not add graphies
to their computer programs. Instead. they design a set of algorithin {or class) specilic graphics
routines which are then added to AAARF s dicplay faciiities. These reutines are called in respouse

to a timer which controls the animation by periodically querying the algorithim foroxt [E.

L1g The AAXARE Design The AAARE design is that of multiple. cooperating proeessos
[+:3/] which communicate via Unix sockets [21]. T'he advantage of this configuration is that it is

not necessary for the display process to be on the same machiie as the algorithm being amimated.

This is exactly the technique used to animate algorithms running on parallel architectures. The

disadvantage, of course, is that it is necessarily more complicated, and fragile.

1.1.5 AAARF Mistory AAARFE was designed and implemented as an animation system
for serial processes by Fife [4] in 1988-1989. It was extended by Williams [29] in 1989-1991 to
include animations for parallel performance analysis and parallel algorithms on the Intel iPSC/2
Hypercube. M.D. Lack [13] further extended AAARF during 1990 - 1991 by adding an expert
system advisor and additional iPSC/2 animations. AAARF contains between 15,000 and 20,000
lines of source code. The entire system, compiled and uncompressed, occupies 25 megabytes of disk

space.

1.2 Problem

The orignal intent for AAARF was to provide a platform for algorithm research. 'This has
never really transpired. for several reasons. First and foremost was a lack of available workstations.
This problem has recently been addressed with the purchase of some forty Sun Sparcstation2s for
use by the general AFIT engineering student body. Since these workstations run Openwindows,
new students are indoctrinated into the Openwindows environment, and are therefore unfamiliar

with Sunview.

The original AAARF design was done using modern object-oriented techniques [4:36-46].
This design is still valid: indeed, as the capabilities of modern workstations have expanded, it has
actaally become more relevant. (This is a rare phenomenon in the world of computers and computer
software!) Certain facets of the design’s implementation, however, have become outdated. These

are outlined below.

1.2.1 Outdated GUI The original AAARF system’s window and mouse driven interface

was written in C and used the SunView [25] windowing environment. Sun has replaced SunView

1-4

with OpenWindows (an X Window System based GUI). OpenWindows [ollows the OpenLook”
protocol, which supports the messy desk environment. This environment is much less rigid than
the SunView environment. However, the overwhelming consideration is that the SunView and
OpenWindows environments operate independently of one another. This results in two separate,
incompatible window managers trying to manage a single screen. For example, SunView windows
cannot be moved forward or backward of OpenWindows windows, and vice-versa, because the two
window managers are not aware of each other, much less ecach others windows. Furthermore, Sun
has indicated that support for SunView will soon be phased out. further emphasizing the need to
update AAARF. All of this adds up to a system that has an unfamiliar interface, and is difficult

to use, especially for new users who have no previous experinence with SunView.

1.2.2 Parallel Algorithm and Performance Animation Using AAARF in the parallel per-
formance mode is best described as difficult. This stems partly from the outdated Sunview GUI
system discussed above, and partly from the inherent fragility of a system composed of multiple
processes communicating over a network. There is also a definite lack of quality documentation for
the instrumentation process. AAARF needs to be made easicr to use in this mode to make it more
useful as a parallel algorithm analysis and debugging tool. 1t is easy for experienced programmers
to lose sight of fact that many users are naive and do not experiment - they learn how to do some-
thing one way and never consider or explore alternatives. With AAARF’s current configuration,
such an approach is simply not possible. Users must be creative and determined or they will have

a difficult time with AAARF when animating parallel algorithms.

1.2.3 Parallel Architectures AAARF currently supports the Intel iPSC/2 Hypercube for
parallel algorithm animation. ‘This architecture is being phased out and support will be discontinued
at the end of calander year 1992. AFI'T has access to other parallel architectures, most notably the
iPSC/R60. It will be necessary to add the iPSC/860 to the list of parallel machines supported by

AAARF.

1.3 Scope

For AAARF to truly become what its designers had envisioned, it will be necessary to make
AAARF easier to use and more reliable, particularly in the case of parallel algorithin animation.
The intent is to evaluate AAARF’s current communications protocols, with the goal of removing
any reliance AAARF places on the user for providing run time configuration information. In part
to satisfy the above requirements, and to make AAARF more readily available, it will be necessary
to replace the current SunView based GUI with a new, X based GUI. The goal is a new X based
AAARF which is as reliable as the current configuration, easier for the end-user to use, and with

a sunpler client programmer interface.

The problems outlined previously in Section 1.2.1 regarding AAARF’s GU! arc not yet critical,
which is precisely why now is an appropriate time to address them. As stated earlier, AAARF is
quite large, and growing larger with each thesis cycle.. The task of replacing the GUI is within
the scope of one thesis cycle, providing certain restrictions are given due consideration. These are
discussed in detail later in the report, but center around how much of the core event-handling
structure must be modified, and or replaced, to accommodate the new GUI. If the core event
handling structure cannot be maintained, it may then be necessary to completely rewrite AAARF
- which is clearly beyond the scope of one thesis cycle. (A prototype AAARF with an X based
GUI was done by Williams in Jan-Feb 1991 and extended by Lack [13] in late 1991. Results are

discussed in Chapter 1V).

1.4 Assumptions

Currently, AAARF is primarily used as an analysis and debugging tool for programs written
for the iPSC/2 Hypercube. Since the problem of workstation availability has eased, it is expected
that the use of AAARF as an instructional aid will increase significantly during the next year. Fur-

thermore, AFIT appears to have standardized on the Sun Sparcstation platform as the engineering

1-6

workstation of choice. It is expected that the user community will remain AFIT for the foreseeable

future, which means that portability is currently not a major issue.

1.5

1.6

Overview

This investigation is divided into three parts:

. Part 1 is a requirements analysis, including a review of current literature, with emphasis on

parallel algorithm animation and parallel program performance analysis. This is presented in
Chapter II.

. Part 2 is an analysis of AAARF to determine what steps can be taken to simplify the use of

AAARF before the GUI replacement phase begins. This is necessary for two reasons: 1) to
provide a simpler to use platform for students using AAARF in support of research, and 2)
to provide a stable platform, not subject to constant change, while phase 3 is underway. This
ts Chapter ILII.

. Part 3 is a rewrite of the AAARF GUI. Phase 3 starts with an analysis of currently available

GUI systems and their attractiveness to AAARF. This is followed by a detailed discussion
outlining the motivations for choosing XView. Part 3 is presented in Chapter 1V.

Summary

The goal of this thesis effort is to make AAARF a more stable and easier to use platform for

algorithm animation. The following chapters chronicle the changes made to AAARF to enhance

its usefulness as an educational, and analysis and debugging tool.

Il. Requiremcnts Analysis

2.1 Introduction

The goal in requirements analysis is to decide what is to be done. As is usually the case in
an academic environment, there is more to do than the allotted time allows. With this in mind it
is necessary to prioritize the list of potential tasks and choose those which satisfy the imniediate
needs of AAARF within the time allotted. Chapter II starts with an analysis of the status of
AAARF prior to the start of this thesis cycle. Next is a summary of candidate tasks, presenting
and justifying what was chosen, followed by a current literature review. Chapter I finishes with a

“formal” requirements statement.

2.2 AAARF Status

As stated in Section 1.2, AAARF was designed using modern object-oriented techniques.
Both the design and the implementation remain valid. The implementation, while not object-
oriented, is modular and maintainable, and has robust, production code quality, error handling
facilities. There is good overview documentation, but there is a corresponding lack of detailed
implementation information. The source code contains marginal comments of the type typically
found in computer programs: they describe what a module does in general terms. but lack specific

information regarding how or why.

Because of its reliance on SunView, AAARF is not portable across architectures (recall from
Section 1.1.4 that AAARF can animate processes running on other architectures). AAARF is a
multi-process system. This complicates serious error detection and recovery, and it also complicates
analysis and debugging. The network and inter-process connection scheme used for animating
parallel (\PSC/2) programs is very fragile (this is covered in detail in Chapter 1L sce Figure 3.1.
page 3-1). The process for running animated parallel programs is strictly scripted and cannot

he deviated from. Running AAARF successfully requires an above-average-knowledge of Unix,

especially if errors occur. For the client-programmer, extensive knowledge of C, file descriptors,
Unix Sockets and, especially, the Unix make facility are necessary. Obviously. there i1s a huge
learning curve. (In all fairness, AAARF is a very well written system. AAARF was written by two
programmers who have well above average programming capabilities. As a result. AAARF contains
coding techniques, and makes use of Unix facilities, which would not normally be found in graduate
thesis code.) The learning curve, combined with a lack of quality documentation, forces potential
users to rely heavily on the local AAARF expert. As expected, this can put a serious strain on
that resource. Perhaps the single largest problem is that of adding a new class to AAARF. The
prospective client programmer must know C, the Unix make facility, and he/she must understand
enough about AAARF to know where to look for direction. Unfortunately, this task is heyond
what can normally be expected during a quarter. This single factor, above all others, has limited

the spread of AAARF.

At the beginning of this investigation, AAARF was available on six workstations. two Sun3s
and four Sund4s. There was, however, no fully functional, running version of AAARF. There are two
reasons why this happened: the first has to do with the manner in which AAARF is maintained; the
second has to do with the instability of the workstation environment at AFIT. In the first case, the
only copy of AAARF available is maintained by the local AAARF expert {(the individual chosen to
have AAARF as his thesis topic) somewhere off of his login directory. These individuals typically
have multiple copies (with no supporting documentation as to their respective states), some, none,
or all of which could be usable at any given point in time. The second reason revolves around the
constant changes in the workstation environment. These changes are primarily due to a shortage
of mass storage space. Users are moved about from one file server partition to another by the
system administrators, as dictated by space requirements. Since AAARF is run-time dependent
upon certain path information contained in files, such a move can render AAARYF unusable until
this information is updated. For the experienced AAARK expert this is only an annoyance. For

the naive AAARF user, this is just enough of a problem to cause them to stop using AAARF.

2-2

Operating system upgrades, window system upgrades, networking changes. and the like also pose

occasional problems as well. For a combination of the reasons stated above, there were actually

three copies of AAARF available at the beginning of this investigation, none of which were fully

functional.

Summary of Candidate Tasks
A number of opportunities exist for enhancing and extending the capabhilities of the AAARF:

Make AAARF a single-copy multi-user platform.

Improve the client-programmer interface by simplifying it and providing detailed documen-
tation with appropriate examples.

Perform a capability analysis of existing animation packages for parallel architectures. The
purpose here is to provide direction, prevent duplication, and uuncover potential dead ends.

Extend the capabilities of the current expert advisor.
Provide a GUI interface to the expert advisor.

Replace the SunView GUI.

Port the parallel instrumentation facilities to the iPSC/860

Add sound generation to the animation facility. This will require an analysis of the current
state of the art and its potential application to AAARF.

Before work on the chosen tasks can begin, it is necessary to make the current AAARF

system functional. Because item 2 above is considered a relatively straightforward task. it is done

in conjunction with this step. Selection of the remaining tasks will be done in parallel with the

above task. The selection criteria are listed in order of importance below:

Maintaining AAARF in a stable condition,
Enhancing the attractiveness and case of using AAARF.
Improving the functionality of AAARF,

Extending the capabilities of AAARF.

The single overriding factor in choosing which tasks to pursue is the need to keep AANARF
running and available for future students and AAARF researchers. Obviously. consideration must
be given to those tasks which. if ignored or postponed. pose the most immediate threat to the
stability of AAARF. Once the stability of AAARF has been ensured. attention can he focused
on improving the client-programmer interface. Two tasks meet the stability test: replacing the
SunView GUIL and porting the parallel instrumentation facilities to the iPSC/860. These two are
considered the most important and are the subject of this investigation. Since a current literature
review is part of any thesis effort. the capability analyvsis is included by default. A review of
currently available GUI systems applicable to AAARF is included as part of the GUI replacement

task.

2.4 Summary of Current Knowledge

Algorithm animation and program visualization are techniques of graphically representing
the execution of programs. Algorithm animation is a relatively new field in computer science.
The term program visualization is applied to the graphical representation of data generated by
programs. It aids users in understanding the data. especially data with complex structures and
inter-relationships. Program visualization techniques have been used effectively for many vears
and are an integral part of many successful software packages. Recent emphasis is in providing
users (programmers) with a set of standard interface routines for graphically representing program
execution results. Both algorithm animation and program visunalization are vital techniques because
humans rely heavily on mental images for problem solving. While this review concentrates primarily
on algorithm animation, it must be noted that the animation of algorithms relies heavily on program

visualization techniques, making it difficult to talk about one without considering the other.

The definition of algorithm animation is abstract enough to allow the inclusion of systems

which. at first glance. might not appear to he algorithm animation systems. Because this is best

illustrated by example. two systems, the Visual Programmers Workbench and the Visualization

and Interactive Programming Support system. are included in the review,

The review that follows first explores several representative algorithin animation systems
to give the reader insight into the focus and direction of current research and how such systems
are emploved. The next section explores animation systems and/or techniques specific to parallel
computer architectures. Finally. the last section discusses salient issues common to all parallel

algorithm animation systems, including the addition of aural cues and imstrumentation issues.

2.4.1 Animation Systems - A Sampling of Representative Systems Recent interest has
centered around simplifying the use of algorithm antmation systems to make them more generally
accessible to non-expert or casual users. This stimulates the use of these systems and promotes the
application of these tools to algorithm design and analysis. Several recently described systems are
discussed with the intent of giving the reader a general feel for the state of the art, as well as some

indication of the direction that future algorithm animation research might take.

2.4.1.1 TANGO - Transition-based A Ntmation GencratiOn Most algorithm anima-
tion facilities require users to design their own animations using the graphics libraries on the host
system. This can be (and usually is) a daunting task. Perhaps the most important aspect of
encouraging more general use of algorithm animation systems is to free users from the burden of
developing their own animations [20]. TANGO is an animation facility that attempts to relieve
programmers of this burden. TANGO is built on a framework which allows users to develop so-
phisticated. real time animations without low-level graphics coding [20:1]. This is accomplished by
abstracting the animation portion from the program being anumated. A simple but powerful set of
data structures and operations allows the programmer to interface with the animation package and
to associate events or actions in the program with the location and movement of graphic entities
on the screen. The path-transition paradigm [20:2] provides a mechanism for displaving the fluid

movement of graphic entities during state changes. TANGO can also he used to animate paral-

lel algorithms since it provides the capability to drive a single animation from multiple executing

processes. TANGO is an X11 based application and runs on Sun and DEC workstations.

2.4.1.2 VIPS - Visualization and Interactive Programming Support VIPS s a graph-
ical extension to UNIX's symbolic debugger, DBX. It is a linked list visualization tool for debugging.
It can dynamically display linked list structures, portions of linked lists, and the fundamental (un-
derlying) structure of large, complex linked lists [19:4-5]. It also has the ability to identify which
nodes are changing location or contents during execution. While VIPS is not intended to be an
algorithm animation facility. it is a good example of how program visualization techniques can
provide valuable insight into the operations of computer programs. The graphics facilities and

debugging capabilities of VIPS would be a valuable addition to any algorithim animation package.

2.4.1.3 GAIGS - Generalized Algorithm [llustration through Graphical Software
GAIGS is an instructional system used for classroom support. The motivation behind GAIGS
is to relieve students of the burden of the graphics programming so that they can concentrate on
drawing conceptual conclusions from the results of their algorithm programming efforts [15:105].
GAIGS distinguishes between an algorithm's implementation. which is any program that results
in the execution of the algorithm. and its visualization which is a sequence of graphic snapshots
that represent the algorithm’s operation upon data structures [15:106]. GAIGS is a library of an-
imations for specific algorithms which are frequently taught in computer science courses. GAIGS
reads a text file of animation commands generated by the users program and translates them into
the appropriate graphics for animation. No knowledge of graphics programming is required on the
part of the user. GAIGS is a static animator in that it can only show the effect of the algorithm’s
execution upon data structures: it cannot show state transitions or events. Any language capable
of generating text files which follow the GAIGS protocol can make use of GAIGS. GAIGS is not
a real time animation system since the algorithms must first be run to generate the mput file for

GAIGS.

2.4.1.4 VPW - The Visual Programmmers Workbench Visual programming languages
use graphical means for representing program objects and allow these objects to be arranged on the
screen in a two dimensional way [28]. The next logical step is an environment for the construction
of visual programming languages. VPW is such an environment [18]. The VPW environment
consists of the following types of specifications: the syntactic structure, the abstract structure,
the static semantics and the dynamic semantics [18:553]. The syntactic structure specifies the
visual appearance and structure of the language. The abstract structure defines a model of the
language’s structure. The static semantics specify the static properties of the language (for example,
type checking) while the dynamic semantics describe the execution properties. Using these four
specifications it is possible to completely describe and implement a visual progranuning language.
VPW is not an algorithm animation facility; VPW uses graphical objects to construct algorithms
rather than graphically depicting the execution of algorithms. However. since VPW provides a
“built in” mapping of graphical objects to executable code, it can function as an algorithm animator.
In this regard, VPW (and other visual programming languages in general) is a very powerful tool

because it is very easy to make program changes and observe the consequences.

2.4.2 Parallel Performance Antmation Systems and Techniqgues The performance of par-
allel algorithms is heavily dependent upon both the method used to partition the algorithm for
execution. and the target machine architecture. For these reasons. the primary use of animation
in parallel computers is performance animation rather than actual algorithm animation. The tech-
nique of animating algorithms. that of instrumenting the source code and animating cvents. is
readily adapted to parallel performance monitoring. Examples of typical events are the sending
and receiving of messages, locking and unlocking of shared resources. etc. The fact that the same
techniques used to monitor and measure the efficiency and effectiveness of algorithms executing
on sequential processors can be applied to the performance of algorithins executing on parallel

processors Is extremely important: one animation system suffices. (Remember that on parallel

architectures the interest is usually on how an algorithm is partitioned for execution and not which

algorithm is being used.)

A detailed state-of-the-ar. analysis of performance and animation systems was done by Lack
[13] in 91. Many of the systems reported on by Lack were architecture and/or application specific.
Recent emphasis focuses on portability for the animation systems and standards for the instrumen-
tation trace data. For this reason, only those systems which have demonstrated portability and for
have been adopted as a quasi standard by the research community are reported on here. The fol-
lowing sections give an overview of these systems in moderate detail including several new entrics
in the field. Also included are several research efforts which are currently using these systems.
This section concludes with a discussion of general trends in parallel performance and algorithm

animation.

2.4.2.1 PICL - Portable Instrumented Communication Library PICL is a portable
instrumented communication library designed to provide portability, ease of programming, and
execution tracing in parallel programs [8]. Obviously, PICL is not a animation system. Since
all animation systems require some form of trace data, it is included here as a representative of
the class of programs which collect data for performance analysis purposes. PICL was initially
developed as a portable communications library for distributed memory parallel multi-processors.
The library consists of 12 low-level communications and system interface routines, and 11 high-level
routines which implement commonly used parallel architecture functions (global broadcast, barrier
synchronization, etc.}. Eventually, execution tracing facilities were added. It is the execution
tracing facilities which are of interest. There are 9 execcution tracing routines. An interesting
aspect of the PICL trace facilities is that users can specify the level of observation to use in
monitoring execution, and they can change the level during execution. The obvious advantage is
that monitoring can be tailored to focus on specific areas of interest. PICL's monitoring facilities

generate two types of trace data: an augmented format to enhance human readibility, and a compact

2-8

format intended for use with the ParaGraph [9] algorithm animation systeni. In addition, PICL
allows users to define “task” specific trace records which can be used to logically mars where in

the program particular behavior(s) occur.

2.4.2.2 ParaGraph With 25 predefined performance animations, ParaGraph is eas-
ily the most “comprehensive” parallel performance animation system available. ParaGraph is a
portable. post processing system. Paragraph gets it’s portability from PICL. the source for it’s
trace data, and X Windows, it’s GUI system. ParaGraph runs on both color and monachrome
displays, but the animations are most informative when viewed in color. ParaGraph uses many
of the same display formats as AAARE (such as Gantt, Animation, Kiviat, thne-space or Feyn-
mann, message and communications load, etc.). ParaGraph also provides several displays which
are currently not implemented in AAARF, one is a variation on the space-time plot which shows
the longest serial thread running through the exccution and the other two are phase plots which

show the relationship over time between communications and processor use [9:371.

A very interesting aspect. of ParaGraph are the “task™ displays. While the standard displays
are informative and useful. they contain no information about where in the program the events
are occurring. 'This is partially solved by allowing users to logically define “tasks™ by bracketing
specific sections of code with the PICIL task begin and end records and assigning it a task number.
Nuribers need not be unique to a processor, thus tasks can be spread over inultiple processors
{which 1s the essence of parallel processing anyway). There are several task displays. In these
displays. each task is assigned a different. color, thus allowing users to see where in the run specific
sections or lines of code are being executed. These displays. when combined with the standard

displays. help provide a more complete and accurate picture of program execution.

ParaGiraph is extensible, allowing users to develop their own performance displays: at ap-
propriate points calls are made to user supplied routines for the initialization. data input, event

Landling, and drawing of application specific animations 9:38].

2-9

Puragraph is not an algorithm animation systeni, although there is nothing in the design of
ParaCiraph to preclude this. The problem is actually with PICL: there 1s no formal mechanism
(o allow users to define their own trace record formats, which would be necessary for algorithin
animation. Both system., are distributed with source code. so it seems likely that ParaGraph
combined with PICL and the necessary modifications to both could produce an algorithm animation

system.

2.4.2.3 VISTA - Visualizat:on and [nstrumentation of Scalable mulTrcomputer Appli-
cations VISTA i: not an animation system, rather 1t is an istrumentation and visnalization
paradigin |3:1] intended to solve the scalability problem mherent in most performance animation
systems. The VISTA paradigm treats performance date essentially the same as distributed data
in the context of the programming models used for parallel programming. This amounts to data-
paralle]l mapping of program onto machine and allows the performance to be viewed as it relates to
each processor, processor cluster, or the processor ensemble and as it relates to the data structures

of the program [3:1].

The VISTA paradigm is composed of three components, Visualization, Data Parallel Repre-
sentation, and Performance Measurement. Of particular interest is the Visualization component.
The basis for the Visualization component is the state of a Processing Element (PF). which trans-
lates to one or more quantitative metrics £ (a scaler. either measured or calculated. this is formalized
by the Performance Measurement component). The visualization "omponent is divided into four

levels:

® microscopic snapshot A performance parameter A at some specific time on a particular
pf(\(‘(‘ﬂso!ﬂ

e microscopic profile A microscopic snapshot which allows I to vary over time. An AAARE
or ParaGraph style single processor display.

e macroscopic snapshot A microscopic snapshot of all PEs at a specific time for a particular
K. This forms a two dimensional mapping and is essentially the same idea used by AANARL
and ParaGraph for multiprocessor displays.

¢ macroscopic profile A macroscopic snapshot allowing A to vary over time.

2-10

The four levels are referred to as Machine Views, and are instances of a general class of multivariate
data plots tailored to display performance measurement data [3:5] . Macroscopic views correspond
to images, thus image analysis and multivariate statistical analysis techniques are used for inter-
preting the data [3:6]. This sounds rather sophisticated. but in reality, many of the performance

views provided by systems like AAARFE and ParaGraph satisfy the “image” label.

The VISTA paradigm has been implemented on an nCUBEZ2 using the PICL-ParaGraph {8, 9]
system and on a MasPar MP-1 using the MasPar Programming Environment’s Machine Visualizer
Window [14]. Both animation systems have been extended to satisfy the macroscopic profile level
of the VISTA visualization component. Several other visualization systems are mentioned, but no

indication is given at to whether VISTA has been implemented using these systems,

VISTA exceeds the capabilities of current animation systems because the hierarchical levels
of the Visualization Component scale up well beyond the 128-256 processor upper limit typically
found in parallel performance visualization and animation systems. By looking at clusters and
ensembles of processors as individual units, while still maintaining the ability to “look closely”
with microscopic views at individual processors, the VISTA paradigm is the first performance

animation system that is truly scalable.

2.4.2.4 Seeplex Seeplex is a real time parallel computer performance monitoring
system to help programmers load balance an algorithm. Load balancing, a technique of distributing
an algorithim’s components in a parallel computer for maximum efficiency, is a common problem
in developing parallel applications. and can often only be done empirically [9]. Seeplex, which
runs only on the NCUBE parallel computer, gets it’s data from the Simplex operating system,
which has extensive instrumentation for performance monitoring. Seeplex provides an extensive
and very flexible set of icon based tools which allows users to easily construct various views of

system performance. Seeplex can be configured to monitor typical parallel computer performance

2-11

criteria (message traffic and message queues, node state information, etc.). The information displays

generated by Seeplex are very similar to those produced by AAARF.

2.4.2.5 Los Alamos National Laboratory Hotchkiss and Wampler [11] have devel-
oped an algorithm auralization system. The premise for their work is that within as little as five
years animation systems will not be capable of conveying the amount of information generated by

massively parallel computers.

To date the authors have concentrated on auralizing mathematical functions, such as y = zn
and f(t) = t + sin(wt). The authors use three basic parameters. frequency, amplitude, and time.
to represent various situations which arise in evaluating mathematical functions. An interesting
aspect of the authors work is that they make use of a variety musical instruments via a Yamaha

synthesizer.

They have produced some very intriguing results:

Chaotic functions such as the bifurcating function z(i + 1) * z(i)r, when reiterated to conver-
gence, clearly conveys the converged functional behavior as well as the chaos where convergence
does not occur ... we have discovered that audibilized mathematical functions can create sounds

that no man has ever heard before and truly excite even the non-musical mind.

Clearly, the use of sound to represent execution events or trends presents some interesting
possibilities, especially when combined with animations. The authors freely admit, however, that

defining what constitutes “good” performance or “accurate” results in terms of sounds is extremely

difficult.

2.4.2.6 Trends in Parallel Performance Animation Current rescarch in parallel per-
formance animation is focused in two critical areas: visualization/animation techniques for mas-
sively parallel machines, and development of an execution trace standard or standards. Also. as

the number of processing elements continues to grow, the amount of trace data generated grows

2-12

accordingly. Nearly all animation systems operate offline. so mass storage space while the trace
data is being generated is also a problem. This, too. is related to trace standards. since any stan-
dard must compact trace data as much as possible. There appears to be little or no attention
given to real time animation. The general consensus seems to be that communications and graph-
ics processing bandwiths will never be wide enough to allow for real time animation of massivel,
parallel computers. Obviously. humans are incapable of processing information quickly enough to
make real time performance animation practical. However, real time algorithm animation is feasible
and is something that has escaped scrutiny by the research community. For very large computer
problems, such as the Grand Challenge problems, interactive real time control of the search process
could be very useful in bounding the search space and significantly speeding up the search as well as
potentially producing better solutions. Of course, until the communications and graphics bandwith

problerus are solved. this is just fringe thinking.

Francioni and Rover in [7] discuss the use of sound to relieve the problem of high density
graphics when performance animating programs for massively parallel machines. The technigue
employed involves mapping one or more of the visual performance parameters to an aural based
representation. The conclusion is that aural cues can enhance the speed of recognition and dis-
tinction of whole and partial programs [7:434]. It is not clear. however, that aural cues scale. or
scale as well as visual cues since aural processing in humans is not as efliecient as visual processing.
Nevertheless, it seems safe to conclude that a combination of visual and aural cues is more effective

than either alone.

There are. of course. other issues. The effect of instrumentation on timing is always a concern.
To date. the method of instrumentation varies widely from hardware support, to OS support. to
intercepting function calls. All have advantages and disadvantages: trace files generated at the
hardware or OS level are less intrusive but lack flexibility. while intercepting function calls usually

requires modification of the source code, but is very flexible. Most massively parallel machine

2-13

vendors recognize the need for execution tracing and are built in support at one or more levels.
For example, Intel's new Paragon machine covers both ends of the spectrum: they are providing
hardware support if the form of a dedicated on board instrumentation processor running in parallel
and software support by including (unsupported) the PICL-ParaGraph system of performance

monitoring.

2.4.3 Conclusion The above reviews give a fair picture of the state of the art of algo-
rithm animation and its applications. All of the systems are primarily research platforms. To my
knowledge, no commercial system is available, although all of the systems reviewed are available
to interested researchers. Several of the reviewed systems, such as Paragraph. and PICL are being
incorporated into the operating systems of some of the new massively parallel machines. For examn-
ple, Intel is including both Paragraph and PICL in its OSF operating system for the new Paragon

massively parallel machine.

Much research still needs to be done. For cxample, there has been very little work done in
studying how best to represent and display conceptualizations and other non-graphical information
on computer screens. This i1s because the emphasis has been in building prototypes to demonstrate
feasibility. The translation of algorithms into graphics, and its compliment, are not independent. of
the semantics of the problem being sclved. This can make automating the process very difficult. If
the development of algorithm animation systems continues to follow the general trend in computer
software development, many point solutions will be demonstrated before a niore general approach
1s adopted. Obviously, a truly useful programming environment would contain aspects of all of the

reviewed systems.

2.4.4 XWindows GUI Systems This section is a brief description of each of the GUI

systems available for the Sun Sparcstations. It is not a complete list and does not include, most

notably, user interface design tools.! 1t is assumed that the reader is familiar with the X Window
System. If this is not the case, Appendix A contains a brief description of X with references,
Detailed analysis of each GUI system can be found in Chap-er 3. Widget is user interface parlance

for object.

e OLIT is the OPEN LOOKZX Intrinsics Toolkit. Tt is Sun's and AT&T’s implementation of
the OpenLook GUI Standard [27]. It provides a robust, extensible sct of predefined widgets.
It 1s built on top of the Xt Intrinsics toolkit and Xlib.

o OSF/MotiffM is the Open Software Foundation” (OSF) graphical user interface design
toolkit [16]. Like OLIT, Motif provides a large set of commonly used, predefined. and exten-
sible widgets. It is also built on top of the Xt Intrinsics toolkit and Xlib.

e Athenais the X Consortium’s widget set. It follows no particular GUI standard. The widget
set is considered weak in comparison to OpenWindows and Motif. Athena was originally
developed in response to user complaints that a widget set was not included as part of the X
distribution package.

o XViewis Sun’s attempt to provide backward compatibility to the large number of SunView
applications that are still around (such as AAARF) [10:zz27ii]. The object set is not as robust
as either Motif or OLIT. XView’s main attraction is that it transparently supports (imost)
SunView calls. XView is, with a few minor exceptions, OPEN LOOK compliant [10:669-673].

e X't Intrinsics provides the basic user interface components from which most other user inter-
face objects (widgets) are constructed [31:14]. It is generally considered too low level for user
interface design. Xt is not evaluated in Chapter IV as a candidate GUI.

e Xlib is not really a GUI at all. Rather, it 1s the C language interface to the XWindows
protocol (there is only one). It is too complex and too low level for serious consideration as a
GUI language. All of the above systems, at one level or another, are implemented with Xlib.
Xlib is not evaluated in Chapter IV as a candidate GUI.

I
Tt

Requirements

2.5.1 GUI Require. -nts This section presents a formal statement of the requirements
which were used to make the final selection of the GUI system to bhe used for the SunView GUI
replacement task. These are only the requirements. A detailed discussion of the pros and cons
of each GUI as they relate to the requirements is presented in Chapter IV. Each of the require-
ments categories is listed with its corresponding rating, followed by the criteria used to derive the

requirement(s).

'User interface design tools allow for the automatic construction of user interfaces using, typically, one of the
GUI languages described above. They are, in effect, a graphical nser interface for the construction of GUIs. These
are useful in constructing user interfaces for new systems, but are not particularly useful in the case of AAARFE.

2-15

e Target User Group - AFIT student body
The target user group is divided into two categories: AFIT students using AAARLE as an
educational tool in support of classroom assignments. and AFIT students using AAARF as
an analysis and debugging tool in support of research. Of the two, the fater is more common.
For the foreseeable future, the primary users are likely to be AFIT students.

o User Friendliness -~ End User: High, Client-Programmer: High
From and end-user perspective, how intuitive are the interface objects, are their functions
obvious, or is extensive training required? For the client-programmer, how good is the soft-
ware interface, are data casy to get into and out of the objects, and is the object structure
clearly defined? s the needed functionality available as an object, or mmst it be built from
lower level constructs?

e Compatibility with the “Normal” Workstation Environment Desirable
Will the GUI run under the OpenWindows environment, or will it be necessary to switch
irom OpenWindows to some other window manager? 1f it 1s necessary to switch from Open-
Windows, how foreign will it appear to students familiar with OpenWindows and will the
necessity to change Limit its use?

e Availability - Necessary
Is the GUI under consideration available for the Sparestation2 and is there a cost and/or
licensing fee associated with it?

e Reliability - Necessary
What is this GUI's reputation for reliability, how often is it revised or updated. who is the
vendor and what is their reputation? What is their relationship to Sun?

e Portability - Desirable
Is this system portable to other architecture’s? If so. what are the cost and licensing issues,
and will it require changes to the basic AAARFE design?

e Enhanced Capabilities - Desirable
Will this GUI provide capabilities not available with SunView?

¢ Development Effort/Time - Low
What is the effort involved in applying it to ANARF? How long will it take to replace the
SunView GUI using this software? Can it be predicted accurately?

e Procurement Effort Low
What is the effort involved in procuring the software?

e Procurement Time - Short (already available preferred)
How long will 1t take to get the software, and are there any special perimissions or waivers
required?

2.6 Summary

First and foremost, the current SunView version must be made runable in the current oper-
ating svstem and windowing environment. This is necessary for two reasons: first, to give students
who wish to use AAARF during the current thesis cyele a stable platform: second. to provide a

benchmark aganst which the new ANARE can be measured during development .

2-16

11l. AAARF Operational Maintenance

3.1 Introduction

The SunView version of AAARF requires maintenance (Section 2.3) before work can begin on
replacing the GUI. This is necessary for two reasons: to provide a stable platform for current stu-
dents wishing to use AAARF in support of their research, and to provide a functioning benchmark
for comparison purposes during the GUI replacement phase. In support of these requirements,
Section 3.2 is a detailed investigation of known AAARF problems and weaknesses. The scope of
this investigation exceeds what is required to satisfy the stable platform and benchmark require-
ments. The motivation for the expanded scope is to provide a broad discussion which can serve
as both documentation and direction for future AAARF researchers. Recommended changes to
AAARF which satisfy the maintenance requirements specified above are presented in Section 3.3.

Section 3.4 is an analysis of the results of implementing those changes.

3.2 Problems with the AAARF System
AAARF’s problems can be roughly divided into three categories:

1. problems that are generic or general in nature, e.g. not related to any particular feature or
facet of AAARF;

2. problems specific to the SunView windowing system;

3. problems with remote animation, and in particular, the iIPSC/2 Hypercube.

Only the first and last of these are included here, problems with the SunView windowing system

are deferred to Chapter 1V, which discusses the GUI replacement.

3.2.1 AAARF i Geacral

3.2.1.1 Configuration Control By today’s software systemn size standards. AAARF is

not really a “large” system. However, when considered in the context of heing the responsibility of

3-1

a single individual, AAARF is indeed large. There are currently twenty directories directly helow
the main AAARF directory, about half of which contain AAARFEF common code. The remainder
contain algorithm class code and examples. The entire system, compiled and linked occupies about
25 megabytes of disk space (including the source files). The recommended method for using AAARFE
is for users to each have their own copy.! There are typically around 60 GCS/GCE students at.
any given time; allowing each to have their own copy then uses about 1.5 gigabytes of disk space.

Obviously, this is unacceptable.

Currently, AAARF is run out of the current thesis student’s directory. The danger with
this practice is that student directories are archived when students leave. These directories can be
restored, but there are likely 1o be path or OS version problems, which can result in a great deal
of effort to get the software running again. It is exactly this practice which resulted in the current

situation of having multiple copies of AAARF on different file servers, none of which work properly.

Originally, AAARF was intended to be a single copy, multiple-user systemy. With the addition
of the parallel animation facilities, it became “easier” to treat AAARF as a multi-copy. multi-uscr
systeni. At the time this was not a problem because of the scarcity of workstations. Now that
large numbers of workstations are widely available, it is no longer practical for each user to have
their own copy of AAARF. Aside from the obvious disk space issue, configuration control is simply
not possible in such an environment because the current AAARE thesis student is responsible for
AAARF and not the system administrator (as would normally be the case). This sitnation is
further complicated by the fact that AAARF should be resident on various file servers to satisfy
the needs of the general student body. Currently. this alone requires five copies he maintain on

various file servers throughout AFIT.

'This conclusion is somewhat ambiguous. There are no specific references regarding where 1o install AAARFE
in the user’s manual or any of the three theses [reviewed. The only reference [could find was in the distribution
README file which accompanies AAARF. which states “... In order 1o compile AAARE. you should do the
following: 1. To make the job easier, the aaarf directory created by the tar tape should be in a user’s home directory.

AAARF is quite “complicated.” especially for inexperienced nsers. For each user to have their
own copy requires AAARF be compiled somewhere off the users home directory. The instructions
for doing this are clear and concise, provided there are no problems during compilation. If problems
occur, recovery for the novice user is nearly impossible. The makefiles for AAARLE are very good
and very extensive. They are also quite unintelligible to anyone unfamiliar with the Unix make[23]
facility. If the user intends to use AAARF for parallel algorithm animation, they must also have
the necessary data collection programs and libraries in a directory called aaarf off of their login
directory on the Hypercube. If the user wishes to run the AAARF parallel classes for the Set
Covering Problem [29:Chapter 5] or the Shell Sort [29:Appendix A} these programs must also he
in their respective directories below the users login directory. Clearly it would be best if all this

were not an issue for the average user.

3.2.2 Parallel Computer Performance Monitoring AAARI s ability to animate algorithms
remotely over the network is responsible for some of it's most complicated and challenging problems.
First time users of AAARF instrumenting their algorithms for iPSC /2 performance animation must
he prepared for a difficult time. The documentation for instrumenting an aigorithm is incomplete
and contains errors. There are no “simple™ examples to guide first time users, only complicated,
rather large, programs such as the shell sort and the set covering problem. A number of the pitfalls
are described in the Sections 3.2.2.2 - 3.2.2.7. Before proceeding, however, it is necessary to explain

how AAARF is configured for remote animation.

3.2.2.1 Remote Configuration For remote animation, AAARF is divided into two
systerns. one which runs on the display workstation, and one which runs on the remote host.
For the purposes of this discussion we are concerned only with AAARF common processes. e.g.
networking and data collection processes (see Figure 3.1). On the workstation side, this is the
process PRASEBG (networking) and on the remote host side. the processes server (networking) and

aaerf_clet {(data collection). In this configuration. AAARF has two modes of operation: automatic

aaarf
Workstation Display i - Host Processor
: : iPSC/2 Hypercube
e
PPerf
L ¥
]]
1)
] 1
T v |
server 3000
g = - =} - =~ -
PRASEBG — server
A A A
]] 1
[}]]
Legend Vo v
_—]]]
fork /exec . ! ! !
Parent ___/__,. child : : : algorithm
id -s.?c_kft.. name : Il :
]
Vo
1]]
, : ' Trace 3001 i
(I A S o]
X L Algorithm | 3010
i Command | 3065] @aarfclet

Figure 3.1. Network Connections for Automatic Mode. In manual mode, the fork/erec link be-
tween server and algorithm is not present. The algorithm must be started manually,

and mannal. In automatic mode AAARF starts the algorithm being animated and in manual mode
the user is responsible for starting the algonithm. In either mode, PRASEBG starts the prograim
server on the remote host with the Unix rsh command. (rsh s the remote shell command. rsh

connects to the specified hostname and executes the specified command[24).)

In automatic mode. the class heing animated provides to PRASEBG the name of the algo-
rithm to run on the remote host. This is in turn passed to the server process as a command line

argument (via rsh), which in turn starts the algorithm. The algorithm being animated is required

to start the data collection program aaarf_clct. aaarf_clct then connects back over the network to

PRASEBG.

In manual mode, no algorithm name is provided to the server process. It is the responsibility

of the user to start the algorithm being animated as well as aaarf_clct.

3.2.2.2 User Requirements for Remote Connection As stated previously, AAARF
uses the Unix command rsh to connect to the remote system. For this to function properly, users
must have an account on the remote system and they must have a .rhosts file in their login directory
(6:29]. Furthermore, they must define a shell variable, AAARF_SYSTEM, on the remote system and
set it equal to the name of the workstation on which AAARF is running. The AAARF_SYSTEM
variable is used by the remote data collection program aaarf_clct to determine with which worksta-
tion to connect. The problem with the AAARF_SYSTEM variable is obvious, it must be changed

each time the user changes workstations.

3.2.2.3 The Notifier Environment AAARF uses a blocking read on it's sockets.
The advantage with the blocking read is that it allows for very tight synchronization between
communicating processes, which in turn greatly simplifies programming. The disadvantage is that

it makes error recovery correspondingly more difficult. The reason for this is somewhat subtle.

Most SunView window events cannot be caught without using the Notifier (the Notifier
is basicly a software interrupt handler [26]). The disadvantage with this is that once the No-
tifier is incorporated into the software, all software interrupts should be channeled through the
Notifier[10:457-468]. This is accomplished by having the Notifier provide wrappers to the standar
Unix or C functions which would generate a software interrupt. Consequently, the Notifier fune-
tions as a filter for all software interrupts directed at a process running under it’s control. regardless
of their origin (window system server. window manager, keyboard, timers, pipes, sockets, signals,

etc.). The obvious advantage in using the Notifier is that it provides centralized control.

What all this means is that the default interrupt handling associated with a process is re-
moved, e.g. *C no longer works when, for example. a process is blocked on a socket read. This
leads to perhaps the most frustrating problem with the current version of AAARF. If a read() on
the socket communicating with the background process is issued before the background process
is fully counected to the remote machine, the entire system freezes (6:30]. When this occurs it is
usually necessary to login remotely and kill all AAARF processes, both on the display workstation

and on the iPSC/2.

3.2.2.4 Hard Coded Socket Ids For communications on the local workstation, AAARF
allocates sockets dynamically before forking the child algorithm process (remember with Unix. child
processes inherit the parents file descriptors [24]). This is not possible for remote animations be-
cause there is no way to guarantec that the corresponding socket identifier will be available on
the remote host. Consequently. the socket identifiers for remote animation are hard coded. If the
either the local workstation or the remote host is using these ids, then AAARF cannot be run in
the remote animation mode. Changing these socket identifiers requires recompilation for both the
affected AAARF source files and libraries and the remote data collection programs. Obviously.

choosing socket 1ds which are not likely to be in use is difficult at best.

3.2.2.5 Configuration Fragility A typical AAARF inter-task communication network
for remote animation is shown in Figure 3.1. This configuration is very fragile because any break
in the link may cause the display screen to lock up. Once locked. users must login remotely to
kill the offending process(es). The problem with this is very simple, but not at all obvious to the
novice user: the only process named AAARF is the main AAARF process. FEvery other process
has a name related to either the class being run, or it’s respective function within AAARF. If
AAARF is killed, some of the background processes remain alive, holding the sockets as resources

and preventing AAARF. or at least that algorithm class. from being run again.

3.2.2.6 Detecting Remole Problems Detecting problems (under program control)
ouce the server program is started on the remote host is best described as difficult. Typical prob-
letns include incorrect paths for the class prograin to execute. and problems detecting any kind of
file system error (such as compressed data files). While these kinds of errors are usually detected
by the remote algorithm, AAARF has no facilities for passing this kind of information back over
the network to the workstation. Unix provides a pseudo facility as a byproduct of the rsh and
fork/erec facilites. forked processes inherit their parents file descriptors, which means that any
printf() statements executed by the server or the remote algorithin (assuming automatic mode)
should appear on the workstation in the window from which AAARFE was launched. This is weak,

but it works.

3.2.2.7 1PSC/2 Hypercube Node Programn Termination An interesting problem which
was discovered during this investigation involves iPSC/2 node termination. If the node programs
are terminated with a kilcube(} command from the host process, rather than being allowed to
terminate “naturally,” the AAARFE data collection process running on the host does not receive
the information required to generate the end of data message for AAARF. As a result, the animation
does not. “finish™ properly, and may in some cases result in abnormal termination of the animation

process itself.

Another problem involving node termination occurs when node programs use the ' exif()
[12] function to terminate normal program execution. Although it is not documented in the users
guide, the erit() function is redefined to be praseerit() by the instrumentation software. (prasceri()
is the function which sends the end of data message to AAARF.) This is done in order to catch
those situations for which the programmer has inserted a call to critf) to terminate processing
abuormally due to some predefined error condition. The recommended method for “normal™ node

termination, as specified in the AAARF Programmer Guide [5:70-72], is to add the function call

praseend() (which also sends the end of data message) to the end of the node main process. If the
author of the node program is using a call to erif() to terminate the node process, then adding
the recommended call to prascend() results in multiple notifications of node termination being sent
to the data collection process on the host. The result is a completely locked screen, once again

requiring remote login to clear.

3.3 Recommended Changes

331 AAARF m General

3.3.1.1 Configuralion Control For AANARE to become a generally available and use-
ful software tool 1t must he treated more formally as an application program, with appropriate
configuration control, and less as a thesis student project. This requires that someonc other than
the current thesis student be given responsibility for AAARF configuration management. Finding
an individual for this task is a complicated problem in an environment where there are so many

workstation clusters and file servers.

The default location for AAARF at AFIT should be the fiic server olympus. The AAARFE
version kept there should be the baseline version and no changes to this version should be allowed
without the permission of the olympus system administracor and the AAARI faculty advisor.
Availability of AAARY beyoud olympus should be considered on a case by case basis with the goal
of keeping the number of copies of AAARF to a manageable minimum. This is the only way to

guarantee that a working version of AAARF is always available.

3.32.2 Parallel Computer Performance Momitoiing

2.3.2.0 Uscr Requarements for Remote Connection The problem of making AAARF
a single-copy. multi-user system s nrimarily related to AAARE s retnote anhmation facilities, Tt

is the network connections which complicates the process of running AAARFE to the point that it

has become easier for each user to have their own copy of AAARFE (and the necessary files on the
remote machine). The background process PRASEBG running on the display workstation uses the
user's login path as the default path once the connection is made to the remote host. Obviously, any
programs which are to be remotely started by AAARF must be in the users directory space. The
most elegant solution to this problem is to obtain permission from the iPSC/2 system administrator
to establish a directory specifically for the AAARF instrumentation and server code on the iPSC/2
and change the PRASEBG program to always look there when connecting. Class algorithns could

also be placed in (or below) this directory.

At the same time, the requirement for the DISPLAY variable must be eliminated. A casual

inspection of the problem suggests there are several possible alternatives (refer to Figure 3.1).

e The first is to change PRASEBG to add the name of the display to the command line argument
list for the rsh call which remotely starts the server program. This would allow the server to
in turn pass the display name on to the algorithm being animated, which in turn passes it
on to aaarf.clet. The only drawback to this process is that it slightly changes the algorithm
instrumentation process.

e The second case makes the same changes to PRASEBG. The server program, however, does
not pass the display name to the algorithm being started. Instead, it declares a local environ-
ment variable called DISPLAY and sets it equal to the display name passed by PRASEBG.
[t then makes this variable visible to child processes using the Unix erport[24] function. The
advantage to this solution is that no changes to the instrumentation process are necessary.

e The last method is to again make the same changes to PRASEBG and have the server
program write the display name to a scratch file in the /tmp directory. acarf.clet then reads
this file to get the name of the display workstation. As in the previous case, no changes to
the instrumentation process are necessary.

A closer look at the inter-process relationships of the three processes on the 1IPSC/2 within
the context of the two modes of operation (automatic and manual) reveals a problem not addressed
by the first two options. In manual mode, the parent-child relationship does not exist between

the server and the algorithm, consequently it would not. be possible to pass the display name via

command line arguments or an environment variable. Thus, the only viable alternative is the last.

3.3.2.2 The Motifier Environment AAARFs reliance on the Notifier should he re-

moved completely. The reason for this is discussed more fully in Chapter IV, but focuses on making

AAARF platform independent. As long as AAARF is dependent upon features or facilities specific

to the Sun platform, it is not possible to port AAARF to other architectures.

AAARF’s dependence on the Notifier is a particularly vexing problem. Because the Notifier
is an integral part of the SunView model, it is necessarily an integral part of AAARF. Removing
AAARF’s dependency on the Notifier will be a difficult and tricky task because the centralized
control afforded by the Notifier will have to be split over several facilites, e.g., signal handlers,

window managers, etc.

3.3.2.3 Hard Coded Socket Ids The problem of hard coded socket 1ds is one that is
not likely to go away. Several alternatives have been explored and none appear any more reliable
than the current method. One method which shows promise is to have PRASEBG dynamically
allocate the necessary sockets, and then pass these as parameters to the server. The sequence
of events then follows roughly that of passing the workstation display name (see Section 3.3.2.1).
With this method there is at least a 50/50 chance that the corresponding id will be available on

the remote host.

3.3.2.4 Configuration Fragility The problem of connection fragility arises from the
synchronous {blocking) reads that AAARF uses for sockets. The obvious solution is to use asyn-
chronous reads (this is done with the Unix fentl() function with the O_NDELAY switch [24]).
Unfortunately, changing a synchronous program into an asynchronous program is never casy, es-
pecially with a system as large as AAARF. The ideal approach is to identify those blocking reads
which can potentially cause the system to lock up and replace them with asynchronous reads. This

may limit the number of changes necessary and potentially simplify the process.

3.3.2.5 Detecting Remote Problems The only way this can be implemented is by
changing the instrumentation system to allow for algorithm faunlt reporting. This can be done in

one of two ways:

3-10

1. Use the Interesting Event (1E) facility. AAARF's 1E facility is the basic unit of conununication
between the algorithm being animated and the animation process [5:Chapter 5]. This is a
very attractive method because the infrastructure already exists. Since each class has its own
animation process, it allows for tremendous flexibility. There is even room for standardization.
The only real drawback is that it would not work in mmanual mode because fEs are not used
in this mode.

2. Modify the PRASE system (aaarf-clct) to include the reporting of application errors. Cur-
rently, only the context of node communication is monitored, not the content. This could
be changed to allow the reporting of exceptions so that aaarf_clct could notify PRASEBG
whenever serious errors were detected by the algorithm being animated.

The only viable alternative appears to be the second one. While it is not as elegant as the first
alternative, it is more complete because it will work for both the automatic and manual modes of

operation.

3.3.2.6 iPSC/2 Hypercube Node Program Terminalion 'The first priority with node
prograin termination is to provide adequate documentation and examples of proper node program
instrumentation. The best way to accomplish this is to provide directories containing examples of
instrumented programs which have been thoroughly tested. Tach should contain a README file
with any caveats clearly explained. The programs chosen for animation should be representative
of the applications typically run on the iPSC/2 and should include some very simple programs
for programmers new to the iPSC/2 (such as the Intel supplied Ring demonstration program).
At the same time, an expanded users manual with detailed explanations and examples should be
developed. The users manual should mirror the example directories and should contain references

to the programs in the directories.

[t may also be possible to programmatically prevent the ezif() problein discussed in Sec-

tion 3.2.2.7. Careful examination of aaarf.clet reveals that the following code segment

{if((end_count == total_pids) && (iprobe(-1) == 0))}

3-11

is used to determine when to send the end-of-data message to AAARF. Simply changing the sense
of the equality check between end_cound and tofal_pids may be sufficient, but thorough testing is

required to ensure that other problems are not created.

3.4 Implementation and Analysis of Resulls

The focus of the operational maintenance phase is to make AAARF runable, and, time
permitting, make it easier to use and more reliable. The following sections describe the results of
implementing the recommendations of Section 3.3. Again, only those recommendations which were

deemed necessary to satisfy the stability and benchmark requirements were implemented.

3.4.1 AAARF in General At the beginning of this investigation there were three copies
of AAARF available, none of which ran properly. After some initial failures, one was cventually
compiled and tested. It functioned properly, with the exception of one of the parallel performance
animations. This turned out to be a simple error in one of the include files and was quickly fixed.

The remaining systems were archived.

3.4.1.1 Configuration Control AAARF has been moved to the olympus file server, in
/olympusj/aaarf. Currently, only the AAARF thesis student and the olympus system administrator
have write access to this directory. No changes to AAARF were necessary to accomplish this. A
very positive effect of this change was to relieve the current AAARF thesis student of the burden
of keeping AAARF running for other researchers while AAARF was in an unstable state during

the GUI replacement.

At the same time, the corresponding AAARF code on the iPSC/2 was moved to fusr2/aaarf.
This did require some changes to AAARF. PRASEBG was chaunged to look in fusr2/aaarf for

the server program. Previously, PRASEBG defaulted to looking for an aaarf directory below the

user’s home directory (SHOME/aaarf). The resulting AAARF system has been used throughout

the Summer '92 quarter with no problems reported.

The issue of responsibility has not been settled. However, a better transition mechanism
has been instituted by requiring the new AAARF thesis student to work with the current thesis
student during the six month overlap period. The transition has been formalized by requiring the
new student to take two hours of CSCE699 during the fall quarter and placing him under the

supervision of the current thesis student.

So far, this has been very successful. Several new parallel algorithms have been instrumented

and incorporated into the AAARF system as a direct result of this formalization.

3.4.2 Parallel Computer Performance Monitoring

3.4.2.1 User Requirements for Remote Connection The recommended method for
eliminating the AAARF_SYSTEM environment variable {Section 3.3.2.1) has PRASEBG passing
the display name to the server program as a command line argument to the rsh call. The server
program then writes this name to a scratch file in /imp where it is subsequently read by aaarf_clct.

(aaarf_clet also removes the scratch file upon termination.)

These changes have proved very useful. AAARF users (including the author) no longer
complain about having to change an environment variable every time they change workstations.
It has also simplified training of the new AAARF thesis student as well as other researchers using

AAARF.

3.4.2.2 The Notificr Environment There is very little in the way of maintenance that
could be done to the Sunview version of AAARF regarding the Notifier. However, some changes

were possible using XView. These are covered in detail in Chapter 1V.

3-13

3.4.2.3 Hard Coded Socket Ids This problem was not addressed beyond what has

already been discussed.

3.4.2.4 Configuration Fragility Several attempts were made at solving this problem,
with no success. (Refer to Figure 3.1, page 3-4 for this discussion. Recall that blocking reads
cannot be interrupted while running under Notifier control.) The socket read which appears to bhe
the culprit is in the function getIE(). getlE() is a class specific control function [5:52] provided
by the client programmer. It’s purpose is to request the next [E from PRASEBG and send it to
the animation process (in this case PPERF). It 1s in the file aaarf/PViews/Control.c. The source
code for getlE() is shown below. As can be seen, the read() can only return successfully if data
is available, and the only way to satisfy this requirement is for the operating system to block the

read action until this occurs, which is exactly what Unix does.

TRACE_DATA *getIEQ)
{
TRACE_DATA *IEpacket;
int IErequest = IE_REQUEST;

IEpacket = (TRACE_DATA *)malloc(sizeof(TRACE_DATA));
if (*IEpacket){
perror("animate(0) Malloc problem"); algKill();
}
/#*x% ASK FOR THE NEXT EVENT *#*x/

if (vrite(algSocket, &IErequest, sizeof(int)) < 0){
perror("animate(1) TX IErequest"); algKill();
}

/*»** Get the next event from the child process #*x%/

if(read(algSocket, IEpacket, sizeof (TRACE_DATA)) < 0){
printf ("ALG: reading alg socket - no data available\n");
perror("animate(2) RX TRACE_DATA"); algKill();

}

/#*» SET IE TO ADDRESS OF THE INTERESTING EVENT PACKET #%x/

return(IEpacket);
}

Analysis of what happens if it is assumed that a read which returns with no data is not a fatal
error shows that the function which calls get/E(), animate TheAlgorithm ignores an empty IEpacket
and effectively does nothing. This is very encouraging because no changes in the control structure

are required to accommodate the non-blocking read.

reset PChild() is the function which allocates the sockets used by getlIE() (also in the
aaarf/PViews/Control.c.) To change the read from blocking to non-blocking, it is necessary to

make a call to fentl(} with the parameters shown below in the code segment from reset PChild.

/**x%xx Start child process if first time or child has died *x#»x%/

if (algSocket == -1 || write(algSocket, &resetCommand, sizeof(int)) < 0)
{

printf ("\n\nStarting BG process\n');

if (algSocket != -1)

(void)close(algSocket);

/**+x SET UP SOCKETPAIR TO COMMUNICATE
WITH THE BACKGROUND ALGORITHM #x%x/

if(socketpair (AF_UNIX, SOCK_STREAM, 0, socket) < 0){
perror ("Opening socketpair"); algKill();
}
/*
fcntl(socket {PARENT]),F_SETFL,0_NDELAY);
*/
/*#*#* START THE BACKGROUND ALGORITHM PROCESS *#xx/

if ((bgProcess = fork()) == -1){
perror(“Can’t fork() background process");
userWarning(NULL, "Can’t fork() background process');
exit();

}

if(bgProcess == CHILD){ /* start a child process =/
(void) close(socket[PARENT]); /* child close the [1] socket */
(void) sprintf(c_socket,"%d",socket[CHILD]);/* use the [0] socket */
if (execl (BGFILE, BGFILE, c_socket, NULL) == 0){

perror('"Can’t execl() background process");

userWarning (NULL, "Can’t execl() background process");

exit();
}
}
(void) close(socket [CHILD]); /* parent closes the [0] socket »/
algSocket = socket [PARENT]; /* use the [1] socket */
}

3-15

This change was made under the assumption that PRASEBG had no way of knowing whether or

not a read was pending.

The results were inconclusive. Using the non-blocking read did in fact allcw the animation
process to be interrupted. It also solved the screen freeze problem caused by users attempting to

start the animation before PRASEBG is fully connected to the remote system.

However, as is often the case in software maintenance, it created more problems than it solved.
Algorithm resets are disabled after the first reset, and the animation never returns control because
it never gets the end-of-data message. An attempt at analyzing PRASEBG to see if the problem
might be at the write end of the socket threatened to consume the entire thesis effort! PRASEBG
is an amazing program. The majority of the code in PRASEBG is in the main() routine, and
it is nearly ten pages of code.® PRASEBG is an incredibly complicated program. It manages

communication over four sockets, all of which are active simultaneously.

Another alternative which was considered, but not tested. was that of adding a signal handler
for *C through the Notifier. This probably would work but does nothing for the attempt to wean

AAARF from it’s dependence on the Notifier.

This is a very difficult problem. Given the complexity of the problem and the knowledge
that the current system works, the decision was made to suspend work on improving the network

connection until after the GUI replacement was finished.

3.4.2.5 Delecting Remote Problems Adding facilities to detect remote problems re-
quires major changes to the PRASE data collection system, aaarf.clct and AAARF. Because of
the scope of making these changes the decision was made not to pursue this until after the GUI

replacement was complete.

20n a whim. [printed the file on a line printer using standard 66 line, 132 character wide printer paper and
measured the main{) routine - it’s nine feet long!

3-16

3.4.2.6 1PSC/? Hypercube Node Program Termination Analysis of changing the in-

equality sense between end_count and fotal_pids in the code segment
{if((end_count == total_pids) && (iprobe(-1) == 0))}

from aaarf_clct shows that simply changing the sense of the inequality is insufficient. (end_count
is the number of nodes which have reported a status of DONE. iprobe() returns the number of
messages in the message buffer for that process.) The decision to send the end-of-data message
to PRASEBG must be based on the assumption that the node programs will not finish in any
particular order. If the user has incorrectly instrumented his/her program then multiple calls to
prase_exil() are generated with the end result of over-incrementing end_count and placing extra
niessages in the process message buffer. However, there is no sunple way to determine whether or
not these remaining messages are node done messages, thus they must all be read. Cousequently,
the sense of the inequality is irrelevent. Note that the compound conditional is necessary because

there is no guarantee that there will be a message in the buffer when this statement executes.

Currently, the best solution to this problem is education and examples. Appendix B is an
extremely detailed example of how to instrument a simple iPSC/2 program for animation with

AAARF. This appendix will be included in the new User’s Manual.

3.5 Summary

The changes made to AAARF have succeeded in making AAARF niore stable. Several

research students have used AAARF during the Summer "92 quarter for analysis of parallel programs

on the iPSC /2 and all have reported favorable results. The next chapter describes the work done

to replace the SunView GUI.

IV. X-AAARF - Design and Implementation

4.1 Introduction

This chapter is divided into two parts: the first describes in the detail the selection of the
Graphical User interface (GUI) chosen for the X based version of AAARF: the second describes the

design. implementation, and testing of the new interface, and the results of making these changes.

4.1.1 A Prototype X-AAARF Early in "91, Williams developed [30] a prototype X window
based version of the SunView AAARF. The Athena widget set was used and development was done
on a Silicon Graphics Iris 4D. The prototype included the AAARF main process, the common
library, and the array sort class. The prototype was written using an early version of the Athena

widget set. This set was reported by Williams to be weak and very buggy [30].

Late in '91, Lack [13:Chapter 5] attempted to extend the prototype X-AAARF. Lack ported
the prototype to a Sun 3 workstation and succeeded, after a great deal of difficulty, in compiling the
prototype. Eventually, Lack was able to make several extensions to the prototype, but the overall

system was fragile and prone to failure.

An attempt was made to evaluate the prototype X-AAARF in May of '92. By this time
the operating system and window environment had been upgraded and the prototype would not
compile. Concurrent with this, an analysis of X Window development environments was underway.
Based on the results of the analysis (described later), combined with the inability to compile the
prototype, and the knowledge that the prototype would probably require redesign and reimplemen-
tation anyway, the decision was made to abandon the prototype code and begin again.! Besides,
it's a software engineering axiom that developers should not attempt to make deliverable products

out of prototypes.

'The prototype X-AAARF was never intended to be anything more than a proof of concept demonstration,
consequently Williams did not document his work. The documentation provided by Lack was too general in nature
to be of much use in resurrecting the prototype.

4-1

4.1.2 SunView in an OpenWindows Environment Most contemporary students at AFIT
are using OpenWindows simply because all of the Sun workstations currently in use at AFIT
default to OpenWindows. Few students have any exposure to, or experience with, SunView beyond
applications such as the LaTeX support programs like dvipage or fexsun. Most are not even aware

that the windows put up by these applications are SunView windows.

The real issue here is that SunView and OpenWindows window managers are incompatible
[27:219]. The SunView and OpenWindows window managers each manage their own window stack.
Thus it is not possible, for example, to put an OpenWindows window on top of a SunView window.”
The end result of this is that applications running under the two window managers must share the
screen in a tiled (non-overlapping) manner if access to both is required (this is, of course, the users
responsibility). Orphaned Sunview windows are particularly onerous, usually requiring the user to
logout and log back in to clear the screen. In extreme cases it may be necessary to re-boot the
workstation. The color maps used by the two window managers are different, causing annoying
flashes and changes in color [27:222] when the mouse is moved back and forth between windows
owned by the different window managers. The window interfaces are also quite different between

SunView and OpenWindows.

The issues described in the prrceding paragraph are generally not a problem for the average
user because they are usually running an application like dvipage. Such applications are of a type
which are run and then quit with little or no interaction with other windows which might be on the
screen. This is not always the case with AAARF. When animating remote processes it is necessary
to have a window open to the remote host. There isn’t always room on the screen for multiple
non-overlapped windows and it becomes problematic when trying to run AAARF and control the
remote process at the same time. The most infuriating problem occurs when an orphaned SunView

window (which can’t be closed or iconified) is covering the center of the screen and the user wants

2The reason for this is not at all obvious: the root window is managed by OpenWindows rather than by the Sun-
View applications; the SunView applications effectively update the display without reference to the OpenWindows
windows[27:219-220].

4-2

to log out because this is where the OpenWindows exit confirmation notice appears, and it can’t

be seen because it cannot be placed in front of the SunView window!

Other problems resulting from the incompatibilities are discussed in [27:Appendix B]. Ap-
pendix B of [27] also discusses actions users can take to remedy or lessen the impact of these
problems but they are too complicated to be practical in the context of AAARF. The goal is to

make AAARF easier to use, not more complicated.

4.2 Selecting a Replacement Graphical User Interface (GUI) - XView

This section presents the analysis which led to the selection of XView as the GUI for the X

Window version of AAARF.

4.2.1 Analysis of X Window Development Enviornments Each of the candidate GUlIs is
examined within the context of the considerations itemized in Section 2.5.1, GUI Requirements
(which the reader may wish to review on page 2-15) before continuing. As it turns out, two of
these considerations, Target User Group, and User Friendliness (End User), are not issues specific

to each GUIL These two are treated in a general manner before each of the GUls are discussed.

The target user group at AFIT, obviously, is the AFIT student body, and in particular,
students in GCS/GCE programs. With the large influx of Sun SPARCstations. the target user group
has ceased to be the issue it once was. With the exception of students in the Graphics sequence,
most students use SPARCstations for their research and day to day computing activities. It is

assumed that the situation is similar at other universities and research/development organizations.

At the same time, as graphical user interface languages have evolved, the differences between
them have slowly diminished to the point that most window environments are essentially the same.
From a “user friendliness™ perspective. the only real issues that remain are those which affect the

programmers using these languages.

Application
Widget Tolkit (OLIT, Motif, etc.)

Xt Intrinsics

Xlib {C Language Interface)

Network Connection

X Server

Figure 4.1. Programmer view of the complete X Window System [31:12].

Recall that each specification or standard is composed of two parts, the toolkit, and the
environment. It is difficult to discuss one without also discussing the other. For this reason, the
discussions which follow may at times appear confusing. Keep in mind that while the toolkit is
the focus of the evaluation, the associated environment is necessarily included as well. (Figure 4.1

gives a visual context to the relationships between the various toolkits and the X Window System.)

4.2.1.1 OLIT OLIT is the OPENLOOK Intrinsics Toolkit and is based on the Xt
Intrinsics toolkit. OLIT is one of two standards currently competing for the title of “Industry
Standard” (the other is Motif). OpenWindows is the associated window environment. The Open-
Windows environment is largely implemented with the OPEN LOOK toolkit (parts of it are still in
XView) and it comes bundled with the OLIT development libraries. OpenWindows is the default
user interface environment for the SPARCstation2.3 It is running on all SPARCstation?2s at AFIT.
OpenWindows is the environment new students are first introduced to, and for many, the only one
they ever use during their stay at AFIT (outside of PCs, which don’t count anyway).

o Compatibility Not an issue.

o User Friendliness -~ Programmer As a “top level” widget set, OLIT provides all of the ben-
efits normally associated with an object oriented paradigm. Within the context of AAARF,
which has no “unusual” interface requirements, OLIT is completely satisfactory. It is also
comp'etely compatible with the C programming language. Oddly, Sun does not ship any
OLIT development documentation, this must be purchased separately.

*This is an installation configuration decision. Sun bundles OpenWindows with the operating system. Of course.,
system administrators have the option of installing other environments.

4-4

o Rcliabiity Reliability appears to be good. Admittedly, this is difficult to gauge. To help with
software problems. Sun provides a known bug, st with cach
release in SOPENWINHOME /share [22:4]. If workarounds are available, these are also -
cluded.

o Portabdity OLIT applications can be run under any window manager that is OPENLOOK
compliant. Most major workstation vend wrs. and many third party vendors as well, supply
OPENLOOK comphant window managers.

e Enhanced Capabilitics OLIT does provide some extended capabilities over SunView. Most of
these are conventence oriented . things which might stmplify programming. but would not add
any additional functionality to AAARFE. In short, there is nothing abont OLI'T that would
allow a previously unobtainable feature to be added to AAARL.

e Development Effort/Tune This too is hard to gnage. Most of the functionality of SunView
is direetly available. The difficult part is transl ing the functionality of the Sun Notifier into
X Windows calls. In truth. this is not as difficult as 1t mught appear on the surface: the X
Windows scover and window manager programs already function in much the same manner
as the Notifier. Thus, it i1s possible to intercept window quit commands. ete.

o Aradability Sun ships new workstations with OpenWindows and OLIT. including the devel-
opment hbraries.

o Procurcment Fffort Not an issue.

e ['rocurement Tune Not an issue.

4.2.1.2 Motif Motif is the Open Software Foundation’s user interface environment
and tootkit. Motif s also based on the Xt Intrinsics toolkit. The Motif widget system s con-
figurable and extensible. Configurable means that Motif widgets are designed to be used as s,
or in combination with other widgets to form new widgets. (This ix just inheritance.) Many of

the standard”™ wiagets avatlable with Motif are actually formed this way.

Motif widgets (instances) are dynamically allocated at run time, Widget classes are statieally
allocated with initialization data and operations ‘methods). and are inherited by instanees at run
time. (The resemblance to C4++ 1s no accident, the Motif toolkit is written i C4+4.) A Motif
widget instance, then, 1s composed of 4 dynamically allocated structure contaming attributes and
aperations specific to that instance. combined with a pointer to a statie data structure containing
attributes and operations for every widget of that class. If the above is a composite widget. then

the above is applied to cach constituent widget in the composite ohject.

Monif widgets implement many of the high level functions assoctated with GUIs and nor-

mally associated with the windows typically found in a windowing environment: menus, huttons,

scrollbars, frames, forms, dialogs, etc. These are then combined to implement common window
environment functions. An example is the FileSelectionBox widget which combines many of the
above functions to provide the functionality to pop np a window, from which users can select or
enter a file name. All of the functionality needed to search the current directory (with a mask or
filter, if desired), present what is found, allow the user to select an entry from those presented,
change directory, or enter a file name from the keyboard is either built into the widget or inherited
from others. Obviously, this is very powerful stuff! With such high level functionality built into
objects, user interfaces can be designed and implemented quickly.

e Compatibility Motif widgets are intended to be used with the Motif window manager (mwm),
but also function well under the OPENLOOK window manager (olwm). Several Motif appli-
cations are in use at AFIT, and several have been developed by researchers in the database
sequence. None have reported any problems that can be directly attributed to Motif running
under the OPENLOOK window manager.

o User Friendliness - Programmer There is a formidable learning curve with the Motif toolkit.
o Reliability Unknown, but assumed to be at least as good as OLIT.

o Portability Motif “appears” to be more widely available than OLIT. It has been adopted by
Silicon Graphics and Hewlett-Packard as the standard for their windowing systems.

e Enhanced Capabililies The same applies to Motif as applied to OLIT.

e Development Effort/Time Motif is somewhat more difficult to work with than the other
widget sets. It is my opinion that the development time using Motif would be longer than
that for OLIT.

o Availability Motif is not generally available on the SPARCstations at AFI'T. Several small
clusters have licenses, but these are not available to the general student population.

e Procuremen! Effort As a minimum, Motif would have to be purchased and installed on all
of the workstations on the scgraph and olympus file servers (about 50 copies). The license fee
1s $54 per workstation. A floating license is also available. but this would only be practical
for the olympus file server.

e Procurement Time Unknown. Since there are a few copies available, arrangements could
probably be made to use one of these machines for development purposes while permission
is sought to purchase the necessary number of copies. This is a delicate situation to be in,
however, because there is always the risk that procurement can’t or won’t cooperate.

4.2.1.3 Athena The Athena widget set was developed by MUT in response to re-
quests from users that a user interface widget set be included with the X distribution. The original
set. was considered weak and buggy. MIT has continued to expand and improve Athena, but the

emergence of the OLIT and Motif toolkits has largely overshadowed the Athena widget set. The

general consensus seems to he that the Athena set is not likely to last.

4-6

tems.

Compatibility Not an issue.

User Friendliness - Programmer The Athena set is widely considered to be one of the more
difficult to work with because it is a fairly low level widget set. This was confirmed by
Williams [30].

Reliability Early releases were reported to have low reliability. The general consensus now
seems to be that it has improved, however, it seems likely that MIT will adopt either OLIT
or Motif as the distribution widget set once it becomes clear which is being adopted as the
standard by the user community.*

Portability Since X comes bundled with the Athena widget set, it is easily the most portable
of the lot.

Enhanced Capabilities None.

Development Effort/Time Williams reported considerable difficulty in using the Athena wid-
get set on the prototype X-AAARF [30]. Williams was also of the opinion that the set was
limited in comparison to Motif and OLIT. It was felt that this limitation would unnecessarily
lengthen and complicate development.

Availability Not an issue.
Procurement Effort Not an issue.

Procurement Time Not an issue.
4.2.1.4 XView XView is an OPENLOOK compliant widget set from Sun Microsys-
The motivation for the development of XView is straightforwardly stated in [10:11]:

“Today there are several thousand SunView applications, and one of the aims of XView is to

make it easy to bring those applications to the X Window System marketplace.”

The XView programmer’s model was largely derived from the SunView model. Much of the func-

tionality of the SunView model is retained, but the “look and feel” have been updated to comply

with the OPENLOOK standard. The XView widget set is not as sophisticated as that of Motif.

There are no high level widgets, like FileSelectionBox, and the objects are not configurable. In fact,

XView is rather simple and rigid in comparison. The initial learning curve is small; programmers

can quickly develop simple, cfficient interfaces with minimal effort. However, to develop something

equivalent to the Motif FileSelectionBox is a formidable task indeed!

*The X consortium recognizes two types of “standards,” exclusive and non-exclusive. Xlib is an example of an
exclusive standard - it is the only C-language interface to the X protocol. Non-exclusive standards, such as the Xt
Intrinsics or the Athena widget set are considered part of the X window system (and the distribution system), but
the Consortium may recognize other similar interfaces as well. [31:11)

Clearly, XView's most attractive feature is it’s similarity to SunView. Sun has committed to
XView by making the voolkit freely available; it is now part of the MIT X distribution as well as
Unix System V [10:12].

e Compatibility Not an issue.

e User Friendliness - Programmer Of all the toolkits reviewed, XView has the easiest pro-
grammer model to understand and is far and away the easiest to program with. A number of
simple, but effective examples are provided with the OpenWindows development software and
are the same examples used in [10]. Since the XView model was derived from the SunView
model, very little effort is required in making the logical mapping from SunView objects to
XView objects.

e Reliability Reliability for early releases was reported to be poor. However. Sun appears to be
committed to XView and later releases (including Version 3) have fared much better. More
1s said about this issue in Section[implementation and results].

e Portability Questionable. XView is currently being shipped by MIT as part of the X distri-
bution. Since the Sun Notifier is an integral part of the XView model, it is not clear what
this means in terms of portability.

e Enhanced Capabilities Noue.

e Development Effort/Time Based upon its similarity to SunView arguably the shortest of the
lot.

e Avaiabiily Not an issue.
s Procurement Effort Not an issue.

o Procurement Time Not an issue.

4.2.2 Motivations for Choosing X View Based upon an analysis of the GUI systems surveved
above, XView was chosen as the GUI repalcement toolkit. Rather than go through an exhaustive
analysis of why none of the other candidate GUlIs were chosen, this section simply presents the

motivations for choosing XView.

A great many factors were considered in making this decision. The driving factor was time:
It was necessary to have a toolkit which was immediately available. aud preferably one which would
be quick to learn and easy to apply. None of the GUls surveyed fit. this requirement better than
XView.” XView was designed with SunView programmers in mind. The syntax is similar, and
In many cases, exactly the same. The similarity between the XView and SunView programming

models facilitates the top down replacement strategy and can potentially accelerate the process.

>This is difficult to know a priori; sometimes one just gets lucky and guesses correctly.

XView 1s OPENLOOK compliant, which means end users do not have to learn another interface.
Procurement is not an issue. Experimentation with XView during evaluation revealed that SunView
code compiles under XView. Apparently, a comprehensive set of XView wrappers allows SunView
code to be compiled directly into XView objects.® The process isn't perfect, and there is some loss

of functionality, but it does further enhance the preferred top down replacement strategy.

4.2.3 A Closer Look at XView Before proceeding, a closer look at XView is in order. X View
is an object-oriented toolkit. Unlike Motif, XView provides no explicit facilities for composite ob-
Jects (there s nothing inherit in XView to prevent users from implementing that kind of function-
ality. but it is not needed by AAARFE). XView objects are extensible, and facilities are provided
for that purpose, but it was not necessary to make use of this feature for AAARE. The advantages
and disadvantages of using XView are summarized in list form:

o Advantages
Most of the SunView GUI look and feel maintained
Notifier still available
Simple GUI structure
Very easy to use
Good introductory docnmentation
Source code for text examples included with OpenWindows

SunView code compilable in XView with minimal loss of functionality

o [Disadrantages
Reliance on the notifier

No high level widgets

Object functionality often not clearly defined
The appearance of the Notifier in both lists is not a contradiction. The Notifier is needed to simplify
the GUI replacement: as long as the Notifier is available, it is not necessary to find alternate means
of handling events. 'This is necessary in the near term. In the long termi. for portability reasons.

reliance on the Notifier must be eliminated.

i - . - . -
Wrappers are an ontgrowth of the recent interest in software reusability. Wrappers allow application code to he
reused by translating function calls to old routines into the format needed by new routines.

4-9

4.2.3.1 The XView Programmer's Model This section presents an overview of the
XView Programmer’'s Model as documented in [10:Chapter 2]. XView provides the programmer
with a predefined set of interface components which are intended to simplify applications develop-
ment. XView is an object-oriented toolkit, but the objcct-orientedness of XView is limited. XView
objects are opaque and XView does not support composite objects at the user level. Although
most XView objects are themselves composite objects, from the user’s perspective XView supports

only one level of inheritance. essentially that of instantiation.

Creating and Mampulating Objects XView provides a very clean interface 10 it's
ohject set. There are only six routines:

e xv_init() Establishes the connection to the server. initializes the Notifier. initializes the
Defaults/Resource-Manager database, loads the Server Resource Manager database, and
parses any generic toolkit command line options. Called onee at the beginning of the program.

e xv _create() Creates an object. Every XView object is created with this function.

xv_destroy() Reclaims the memory allocated to an object.

xv_find() Conditional front end to xv_create(). Searches for and returns an object with the
specified parameters. If none is found, the object is created.

xv_get() Get the value of the specified attribute for the specified object.

xv_set() Set the value of the specified attribute for the specificd objeet.

Using these six routines, programmers can create and manipulate the entire XView object set.

Types of Objects There are eight basic object types in XView. Three of these,
Generte Objects, Windows, and Openwins are core classes and are not directly instantiable by the
user. The remaining five are discussed below. The basic window entity s the frame. All other
windows are classified as subuwindows and must be attached to frames.

e Frames A frame is the basic window ohject to which the programmer has access. There
are two flavors, a base frame, and a pop-up frame. A base frame is a frame with no parent.
All other frames are subframes, so a pop-up is any frame which is not the base frame.” Each
application has one base frame. There are no (preset) limits on the number of subframes. A
framie is characterized by a border, which is managed by the window manager. and an interior
which is configured and managed by the programumer. The window manager controls resizing,
contfication. de-iconification. refreshing. quitting, ete. AL XView windows are framed.

“Confused? So was I The only way I could straighten this out was to write a program and instantiate a few
frames and <ee what happened.

A-10

e Canvases A canvas subwindow is the XView graphics window. It’s size is independent of the
owning frame. The entire drawing surface is called the paint window and the visible portion
is the view window. Multiple, scrollable views of a canvas are allowed within a frame.

e Text Windows A text subwindow provides basic text editing facilities. This window is a
specialization of the canvas subwindow with text editing capabilities added.

e Menus Menus are not actually XView windows, but they are bound to windows at display
time. XView supports a full range of menu types and options such as pull-down, pop-up and
pull-right. Menus can be pinned to allow them to stay on the screen after the selection is
made.

e Scrollbars Scrollbars are interesting objects. They can exist independently, or be attached to
subwindows. Scrollbars are windows (because they are visible) but they are usually thought
of as properties of subwindows. Scrollbars do not manage the objects to which they are
attached, it is the programmer’s respousibility to make the screen updates associated with
scrollbar actions.

An important feature of XView that is not a window is the Panel. Panels implenient the OPEN-
LOOK control area. Panels manage panel items, e.g. buttons, sliders, text ficlds, and other forms
of inputting data. The motivation for panels is to provide a mechanism for propagating events,
especially for objects which do not have a window associated them.® Panels are very important
in XView. For example, an application frame with no subwindows attached cannot catch interior

mouse events. Attaching a panel to the frame allows these interior events to be propagated.

Obviously. there is much more to XView than what has been presented here, but this is
sufficient to give the reader the necessary background for the design and implementation discussion

which follows.

4.3 GUI Replacement - Design, Implementation and Results

The goal of the replacement process is to maintain AAARF in a functional state. Becanse of
the expected lengthy time required to replace the GUIL and bhecause considerable time was spent
strengthening AAARF s state at the beginning of this thesis cycle. no changes to the structurc of

AAARFE which might jeopardize this goal were attempled. AAARF is too big, the time at AFIT

At~ - . .

For the server or window manager to be able to propagate an event, that event must be associated with screen
real estate. Buttons have windows associated with them, but menus do not. Thus, if a button has a menu associated
with it, it is the panels responsibility to ensure that the menu gets the button push event.

too short, and the learning curve too steep to attempt major design changes in concert with the
GUI replacement. Furthermore, it is absolutely vital that AAARF remain completely functional
between thesis cycles. Once the GUI replacement is completed, consideration can be given to design

change opportunities which might arise as a result using a different GUI toolkit (see Section 3.2.3.

This section starts with a description of the motivation for choosing the replacement strategy
ultimately adopted. Next follows a general discussion of several high level design issues. Then each
of the major components of AAARF is presented in a general discussion format which includes

design. implementation, and results. Finally, the entire GUI replacement. process is summarized.

4.3.1 Replacement Strategy The preferred method for this effort is to proceed in either a
top down or bottom up manner. The decision as to which is appropriate is driven by the design of
AAARF and the tool chosen for the job. Ideally, these two factors should be compatible enough to

permit a structured approach.

As shown in Figure 4.2, AAARF uses a modular design paradigm. Each class system is a

self-contained. executable system, e.g. each could be run stand-alone.”

Each GUI standard has two parts: the toolkit specification and the environment specifica-
tion. For example, OpenWindows is OPENLOOK compliant because it is written in OLIT (which
is OPENLOOK toolkit compliant). and the open look window manager (olwm) is OPENLOOK
environment compliant. This is important because there s no guarantec that GUls compliant in
one environment can run, or run correctly, in another. For example, windows developed using
OLIT may not run in the Motif environment. If they do, they may not run properly. or features
may he missing. SunView is outside of all this. SunView windows work regardless of the X envi-

ronment on the workstation. Thus, the initially perceived liability of SunView's independence is

“This is not strictly true because each class is required to open a socket for communication with the main AAARE
process. However, the only interaction the main AAARE process has with the class system is to send a kil message
if the user quits AAARF, or to send stop. go, and resct messages when running under central control. Otherwise
the class system is entirely self contained and receives all it’s input through its own window interface.

4-12

AAARF

Main Process

/\

Class-Specific
Window-Based
Process 1

Class Specific
Background
Process

Figure 4.2. The AAARF modular design. Each outer box is a self contained system with it's own

Class-Specific
Window-Based
Process n

Class Specific
Background
Process

window based interface. Inner boxes are separate processes.

really an asset! The importance of this cannot be overstated! It means that while the AAARF
main process’ interface is under development, the class animations can still be run. Once the main
process interface is completed and tested, each class can be done without affecting those which still
contain the SunView interface. Clearly, the modular design of AAARF coupled with the ability

to display SunView windows provides the ideal development environment for the replacement of

AAARF’s SunView GUIL

From a GUI perspective, the major components of AAART are:

o The AAARF main process. The AAARF main process is the highest level interface 10
AAARF. It contains the main menu, the environment control facilities, and the central control

facilities. Each has a window associated with it.

o The AAARF common library. Each AAARF class interfaces with the common library for
animation control. There are three windows in the common library. the master control panel,

the status panel, and the animation recorder.

o The AAARF classes. There are currently six AAARF classes. Each class has one window.
the animation window, directly under it’s control. Each class also “inherits™ a copy of th

common library windows at link time.

The goal is to selectively replace the GUI for each of the major components. Again. AAARF s mod-

ular design provides the necessary mechanism through it’s use of the Unix make facilities[23:Chapter

5]. The main AAARF process, the class common library, and the six classes are organized as sep-

arate compilation units. A portion of the top level Makefile for AAARF is:

BASE = $(PWD)

LIBS = main common PViews

APPS = ArraySort PPerf Traverse Trees PSort PSCP
all:

for d in $(LIBS) $(APPS); do (cd $$d; $(MAKE) BASE=$(BASE)) done

The arguments to LIBS are the AAARF Iibraries and the arguments to APPS are the six AAARF
classes. FEach of these arguments is a directory with it’s own Makefile. By selectively removing
these arguments, the make facility can be made to ignore them. The easiest way to do this is to
move the unwanted arguments to the next line and comment them out. For example, to limit the

contpilation to just the AAARF main process, the Makefile looks like:

BASE = $(PWD)

LIBS = main

#common PViews

APPS =

#ArraySort PPerf Traverse Trees PSort PSCP

11:
2 for d in $(LIBS) $(APPS); do (cd $$d; $(MAKE) BASE=$(BASE)) done

Thus, work can proceed on the AAARF main process, without affecting any of the executables
built previously. Once the AAARF main process is completed, the class common library is done,

followed by each class in turn.

The net effect of all this is that AAARF can remain functional throughout the conversion
process: SunView modules and XView modules can interact without interference. One could not
ask for a “better” development evnironment! Based upon the above, a top down approach was

chosen.

4.3.2 Test Strategy The general strategy is to test cach module as it is converted. AAARF s
modular design combined with the ability to display SunView windows naturally supports this. The
preferred method for operational testing is to run each animation and exercise all of the Master
Control Panel options. Each class should also be saved as an environment and restored, and
recorded and replayed. Also. AAARF was given to the current AFIT CSCE586 class for use in a

homework assignment involving the ArraySort class.

4.3.3 Design/Implementation Issucs

Main Window

[
Main Control Environment Algorithm
Menu Panel Panel Windows
(a)
Algorithm
Window
Algorithm Master Recorder Status
Menu Panel Panel Panel

View window 1

View Window 2

View Window 3

View Window 4

(b)

(a) Original structure of the Main window. Each window is a separate window.
(b) Original structure of the Algorithm window. The view windows are contained
within the Algorithm window. The remaining windows are separate windows.

Figure 4.3.

4.3.3.1 Algorithm Class Base Window 'The original AAARF window structures are
shown in Figure 4.3. These figures show the SunView parent-child relationships between the win-
dows. Note in Figure 4.3(b) that the number of view windows is limited to four.!® These are
not separately framed windows. Rather, each is attached to the Algorithm Frame as a SunView

canvas subwindow, and each is dynamically resized depending upon how many are visible at any

given time. The visual effect of this is to have the Algorithm Frame divided into (up to four) equal

19 The motivations for the decision which led to limiting the number of views to four is not clear, however experience
has shown that displaying four views causes serious performance degradation. A discussion regarding the motivation
for choosing this relationship could not be found in [4]. The cause of the performance problem is unclear. The control
structure which governs which views to paint (the class specific function processIE()} is simple and well structured
and the associated graphics routines are short and uncomplicated. A more in depth analysis is required before the
exact cause can be identified, but that is not part of this effort.

Master
Panel

Algorithm Algorithm Recorder Status
Menu Window Panel Panel

View window 1 View Window 2| | View Window 3] | View Window 4

Figure 4.4. New structure of the Algorithm window.

sections, with one or more of the four visible based on user selection. The disadvantage to this
is that the relationship between views in terms of size and and information conveyed is nonlinear,
e.g for two views to convey equal levels of information may require the views be different sizes.
With the current configuration, this is not possible. An alternative method allows each algorithm
view to have it’s own window. The advantage to this is that it allows the view window’s size to
be optimally adjusted for each view. The disadvantage is that it requires changing the core data
structures and routines AAARF uses for window control. This design change was not implemented
becase of the requirement not to make any core design changes during GUI replacement. However,
changes in the relationship between the Algorithm window and it’s Master Control Panel were
made to accomodate incorporation of this change in the future. These changes in the relationship

between the Algorithm window and it’s Master Control Panel are described next.

In SunView AAARF, the Algorithm window is the base window for the algorithm class. The
remaining windows in Figure 4.3(b) are children of the Algorithm window. Obviously, if cach view
1s to have it’s own window a new base window must be chosen. The Master Control Panel is the
obvious choice. The Master Control Panel provides for all input, view, and animation controls for

each algorithm class. Making the Master Control Panel window the base window requires changes

4-16

to the basic event handling structure of the class common code. These changes are restricted to the
files aaarfCommon.c, aaarfMaster.c, and aaarfViews.c in the common directory. Figure 4.4 shows

the revised Algorithm window relationships.

The decision to proceed with this change was the only significant design change made during

the replacement of the GUI.

4.3.3.2 Graphics, Fonts, and Bulton Icons XView has a set of graphics functions,
but their use is discouraged. Instead, the manual recommends the Xlib graphics routines. At the
same time, XView also provides a set of wrappers for the SunView Pixwin graphics routines. The
Pixwin graphics libraty is a small set of very high level routines, while the Xlib graphics library is
low level. Concern was expressed that replacing the Pixwin routines might be very tiine intensive
and prone to error so the decision was made to postpone replacing the graphics until after the GUI

replacement was completed.

Fonts in SunView are not compatible with fonts in XView. For most of AAARF this is not
a problem, the default fonts suftice. However, several of the animations are dynamically resized as
the size of the search space changes. The graphics routines for these animations have font tables
which they use to match the size of the font displayed to the size of the animation. The value of
this capability is minimal since these animations grow very quickly. For this reason the dynamic

font sizing was not carried forward into the new version of AAARF.!!

The SunView AAARF Environment control panel and the Recorder panel both contain button
icons. The icons were eliminated from the new version of AAARF in an attempt to reduce the size
of the these two windows. The size savings amounted to about 30% for the Environment control

panel and slightly less for the Recorder panel.

1 The code has been commented out and appropriately documented in the event that future AAARF rescarchers
require this capability.

4-17

4.3.3.3 XView Imposed Changes Because of it’s similarity to SunView, XView did
not force any changes in the existing AAARF design. XViews compliance with the OPENLOOK
specification and the fact that it is an X Window System toolkit forced several implementation
changes. These changes deal primarily with event handling and are caused by:

o the elevation of frame event handling from the application program to the window manager.

e the distribution of window events from the frame to other subwindows. In SunView, the
frame catches most events. In XView, event catching is spread acr iss the many subwindows.
The SunView model is simpler, but the XView model is more flexible.

In general, event handling in XView is more sophisticated than in SunView. This is really inherited
from X Windows and not due to any particular feature of XView; all of the toolkits surveyed provide

similar capabilities. Overall, the impact on AAARF is minimal.

4.2.3.4 Malters of Style and OPENLOOK Compliance Openwindows applications
supplied by Sun typically do not have an explicit “quit™ or “kill” button or menu item outside of the
one provided by the application’s base frame. In order to maintain consistency across applications,
XView AAARF does not provide any “quit,” “kill,” *iconify,” or “de-iconify™ facilities for any of it’s
windows. These functions are provided explicitly in SunView AAARF (via menu picks), but have
been removed in XView AAARF. XView uses openuin windows for frames and these frames come
packaged with event handlers for these actions. XView provides the necessary Notifier and callback
facilities to intercept these actions if the application requires it. XView AAARF inakes liberal use
of these capabilities. The goal, from a users perspective, is make AAARF indistinguishable from

other Openwindows applications.

434 The AAARF Mam Process viie first module to be replaced was the AAARF main
process. This is the main directory, containing the files aaarf.c. aaarfControl.c. aaarfMenus.c.
aaarfEnrironment.c. aaarfWindows.c. and aaarfUtilttics.c. These files provide the top level inter-
face to AAARF. The replacement started with an intense training session. reading the text [10]

and running and modifying the examples in the XView source demo directory. The intent was to

1-18

gain proficiency, and an understanding of the preferred use of the XView objects. This was fol-
lowed by an analysis of the SunView AAARF source code for the AAARF main process. This was
done by printing the source files and highlighting the code that was expected to require changing.
Diagnostic messages were added to the SunView code to help in tracing events so they could be
more easily mapped to the XView object system. The primary goal was to establish a procedure

which could be used for the remainder of the modules.

The AAARF main process consists of:

e The AAARF main menu, a pull-down menu that starts a user selected class, pops up the
environment control panel, pops up the central control panel, or puts up a help screen,

e The Central control panel, a button window that is used to simutaneously control multiple
algorithms,

e The Environment control panel, a button and text entry window that allows the saving and
restoration of the current AAARF window configuration.

Several changes to the AAARF main menu were required because frame control no longer lies with
the application. SunView AAARF provided “iconify,” “de-iconfy,” and “kill" as options in the
main menu. These were removed from the main menu and added to the main frame event handler

(see Section 4.3.3.4).

4.3.5 The Common Library The common library is one of the two most complicated
modules in the AAARF system. It consists of the following files: aaarfCommon.c. aaarfMastcr.c,
aaarfRecorder.c, and aaarfViews.c. The Master Control Panel, as discuss<ed in Section 4.3.3.1, was
elevated to base frame status ard the Algorithm Frame was made a child of the Master Control
Panel. These changes proved relatively straightforward, although there was some mitial difliculty
because of weaknesses in the event handling descriptions in the reference manual [10:Chapters 6.20).
The Algorithm window in SunView AAARF has a pull-down menu associated with it. much like
the imain process. This menu pops up the Master Control Panel, the Anunation Recorder. the
Status Panel. and has menu picks for “iconify.” “de-iconfy,” and “kill.” In addition, in SunView

AAARF. selecting a class from the main menu canses only the Algorithm window to be displayed.

To see the Master Control Panel requires a menu pick from the Algorithin window menu. Since
the Algorithm window was no longer the base frame, these functions had to be placed elsewhere.
The only alternative was the Master Control Panel. The Algorithm window menu was deleted and
buttons were added . ~ the Master Control Panel for poping up the Status Panel and the Animaiton
Recorder (see Figure 4.6). A positive side effect of changing the base window to the Master Control
Panel was that it necessitated showing both the Algorithm window and the Master Control Panel
at main menu selection time. This is seen as a plus because with SunView AAARF the first action

users normally take is to pop up the Master Control Panel.

Most of the effort in the common library was spent in developing an intuitive, casy to grasp
layout of the Master Control Panel. The SunView AAARF panel is well organized and functional,
but several new panel objects are available in XView which are not available in SunView. One in
particular is the non-exclusive panel choice item. This panel object displays lists and allows users
to select multiple items. For example, there are seven possible views for the ArraySort class. Users
may choose to display up to four of these simultaneously. SunView AAARF implements this as
a non-exclusive choice pull-down menu. To select four views requires three right click-and-drag
menu pull-down operations (there is always one view). With XView, all seven are displayed as
small checkable boxes with labels, much like small square buttons with text beside them. Views
are selected/de-selected with a left mouse click. This type of interface object. is very fast. and very
mtuitive. Improvements of this type in the user interface satisfy the end user “User Friendliness™
requirement specificed in Section 2.5.1. The original Master Control Panel is shown in Figure 4.5

and the redesigned Master Control Panel is shown in Figure 4.6.

The AAARF design precludes fully testing the Master Control Pancl without a compatible
algorithm class. This is because the algorithm classes provide most of the Master Control Panel's
functionality. The AAARFE common library provides only a skeleton control panel with several

common functions. Buttons. sliders. and menus picks for CONTROL., INPUT, ALGORITHM,

4-20

LAYOUT, and VIEW options are added to the Master Control Panel by classes at run time. The
ArraySorts class was chosen as the next module to be converted because it provides the most

comprehenzive set of interface options.

4.3.6 The Array Sort Class Converting the ArraySort class was relatively straightforward.
A great deal of time was consumed in experimenting with the various XView panel objects in an
attempt to reduce the size of the Master Control Panel, but this turned out to be a futile effort.
In the end, real estate savings were sacrificed in favor of ease of use. The Master Control Panel
interface is very solid, but testing with the ArraySorts class uncovered a problem in the event

handling structure.

The XView canvas object provides an event hook (in the form of an attribute), called the
CANVAS_REPAINT_PROC for a user supplied repaint procedure. The recommended method for
redrawing a canvas window is to provide the name of a redraw procedure for this attribute [10:91-
98]. When the server or the window manager detects that the window requires redrawing (a
resize operation, or the window 1s uncovered). this procedure is called. In SunView. this is not a
problem because the frame receives he event: only one event is generated regardless of the number
of canvases attached to the frame. In XView, the canvases themselves receive the event. Since
AAARF allocates all four canvases at run time, each canvas receives the event, resulting in some
very annoying flashing while the screen is repainted four titnes. A “workaround™ was developed

but it proved extremely difficult and time consuming.

The workaround involved adding special conditions to several of the event handling routines
in the common hibrary. It was largely an experimental process. The problem is compounded by
the fact that the event network, e.g. which functions get which events in what order. is not well
defined n [10]. To further complicate the issue, mulitple WIN_RESIZE notifications are generated
whenever the base frame is moved or resized, which adds to the flashing problem [10:122]. This

problem is a direct result of having four views assigned to one window. XView allows this, but

4-21

Animation Master Control Center CLOSE

CONTROL OPTIONS

Animation Speed: [100] 0

Single Step O (Break Point Selector]

INPUT OPTIONS

Pattern : C Linear # Cycles : O1 Order : < Normal

Elements: [25] 10

Sortedness: [0] i
Seed: [50]

ALGORITHM OPTIONS

Algorithm Type : < Straight Insertion Sort

VIEW OPTIONS

(

Figure 4.5. SunView Master Control Panel for the ArraySorts class.

4-22

Figure 4.6. XView Master Control Panel for the ArravSorts class.
g)

4-23

there is no discussion in the manual regarding the use of canvases in this manner. This is very
likely non-standard use of canvases and it reinforces the opinion that the current method of having
four views per window should be replaced with individually windowed views. If this is done, then

the default event handling for canvases can be used, significantly simplifying the event handling.

Once the ArraySort class was completed, most of the “new” work replacing the GUI was
done. The Traversal and Traveling Salesman classes were converted very quickly. That completed
the serial animation classes. What remained was the parallel classes. The “other” of the two most

complicated modules was next: the Parallel Views library.

4.3.7 The PViews Library The Master Control Panel for the parallel performance class is
shown in Figure 4.7. The panel is not large enough to hold all of the control parameters necessary
for parallel performance monitoring. As a result, an additional popup parameter panel was added
by Williams in 1990 [29]. The panel is shown in Figure 4.8. The panel is activated by left clicking
on the Parallel View Options button on the Master Control Panel. The work in converting
the PViews library was relatively easy, but tedious because of the sheer volume of panel objects

hetween the two panels.

The PViews library is designed to allow each parallel class to add algorithm specific panel
items to the Master Control Panel and the Status display after the parallel performance objects
have been added. In effect, this amounts to creating an object, and then updating it by adding list
items. The SunView panel objects support this very “nicely,” but XView does not. This problem
occured in two places on the Master Control Panel, the Break Point and VIEW QPTIONS
panel items. The changes resulting from this loss of functionality are the same for both panel items
so only the VIEW OPTIONS item is discussed. (The discussion assumes the panel item has
already been created in aaarfMaster.c.)

The algorithm class is required to provide the function sef Vicwltem() to add the list of views

to the panel object. A call to the PViews library function setPViewltem() gets the default parallel

1-24

Figure 4.7. Master Control Panel for the Parallel Performance Class,

4-25

Figure 4.8. Parallel View Options panel.

1-26

performance views. This is followed by a while loop to add the class specific views

AAARF code for <etting the VIEW OPTIONS panel item is shown below:

void setVievItem(viewItem)
Panel_item viewltenm;

int index = 0, menu_index;
static char *viewNames[] = {"Sticks",

"DOtS",
"Rainbow",
"History",
0}:
/*
* set up the built-in views first, the number of other views varies
*/
menu_index = setPViewItem(viewItem);
/*
* now set up the algorithm data viess
*/

zhile(vievNames[index])

panel_set(viewItem, PANEL_CHOICE_STRING,
menu_index+index, viewNames[index],
0);

index++;

panel_set_value(viewItem, 1);

. 'The original

The XView panel object needed for the VIEW OPTIONS panel function does not support this.

Consequently, the setViewltem() function call was changed to:

void setViewItem(viewItem)
Panel_item viewItem;

xv_set(viewltenm,
PANEL_CHOICE_NCOLS, 3

PANEL_CHOICE_STRINGS, /#++%x Default Parallel Views *x*x/
"Animation", /* 1 %/
"Messag.: Lengths", /* 2 x/
"Kiviat", /> 4 x/
"Feynman'", /* 8 =/
"Gantt", /* 16 =/
"Utilization", /* 32 x/
"Comm Stats", /* 64 x/
"Comm Load", /* 128 =/
"Queue Size", /* 256 =/
"Message Queues", /% 512 =/
"RVA", /* 1024 =/
/*#xx Algorithm Specific Views ##x#/
"Sticks",
"DOtS",
"Rainbow'',
"History",
“NULL,
PANEL_VALUE, 1,
NULL);
}
From a software engineering perspective, this is not a good solution. A hetter approach defines
an array of strings in a header file containing the default views, with enough room for any ad-

1-27

ditional class specific views which might be added. This is then passed as an argument to the
PANEL_.CHOICE_STRINGS. It doesn’t work. The data type for the PANEL_.CHOICE_STRINGS
is a “list” of character pointers (char *). Whatever a “list”™ of character pointers may be. it's
definately not an array of strings. This problem is typical of those encountered with XView panel

items.

Once the PViews library was completed. the three parallel classes. the Parallel Peformance
Views, Parallel Sort. and the Parallei Set Corering Problem were converted. By this time. famil-
larity with XView and AAART had reached the point that converting these three modules did not

require any special effort.

4.3.8 General Results During testing a problem with the remote animation system was
discovered. The background process PRASEBG's attempt to connect to the iPSC/2 caused two
shell error messages to be printed on the workstation window from which AAARF was launched.
The error messages indicated that a stty command option was illegal. AAARF does nothing with
the stty command. The problem turned out to be in the .cshre file on the iPSC/2. The file had

two lines for setting the crase and kil values.

stty erase '~ 7’

stty kill ’-C’

These two entries had never been a problem when using the SunView AAARFE. even when
connecting from an Openwindows environment. But there is something about the XView version
which causes these two lines to generate an error. The problem manifested itself in strange ways.
Sometimes the animations wonld run to completion. and sometimes they would simply freeze the
monitor. Occasionally. the animation window would just quit outright. The problem was “solved”

by moving these two lines to the login file.

}-28

The ArraySorts class was thoroughly tested by the AFIT CSCE586 class. Students were
given a homework assignment requiring them to run the AAARF ArraySort class and evaluate it.
It was decided to allow the students to use the new XView version. This was a difficult decision to
make because work on the serial classes had just been completed, but very little testing had been
done. Twenty-three students used AAARF over about a one week period. The results were very

encouraging: no failures or errors were reported.

The parallel performance views have been thoroughly tested. Four parallel algorithmns were

instrumented and animated. Again. no problems were reported.

The process for converting modules developed during the conversion of the AAARF main
process proved very successtul. By the time the AAARF common library was completed. enough
proficiency with XView had been garnered that the remaining modules were completed relatively
easily. The value of having a conversion process cannot be over emphasized. It prevented oversight

and helped immensely in partitioning the work to prevont overloading.

Finally. the new user interface has considerably simplified the use of AAARF. The XView
interface has much the same look and feel as the Openwindows applications supplied by Sun. The
annoying screen flashes of the SunView interface are gone, as is the necessity of having to remember

two different interface protocols.

4.4 Summary

This chapter detailed the criteria used to select XView as the X-AAARF GUIL The design,
implementation and results of implementing the GUI were presented. The resulting system has been

thoroughly tested in accordance with Section 1.3.2 and shown to perform as well as the SunView

version of AAARF.

1-29

V. Conclusions and Recommendations

This chapter presents conclusions regarding the longevity and durability of the new graphical
user interface and suggests ideas for future work in this critical area. Recommendations for simpli-
fying AAARF maintenance and recommendations for future algorithm animation research are also

presented.

5.1 Conclusions

The XView GUI for AAARF has met or exceeded the requirements established in Sec-
tion 2.5.1. As stated in Chapter 1V’s summary, the system has heen thoroughly tested and the
results are very encouraging. The look and feel of the Openwindows environment has been captured
and AAARF’s “ease of use” has improved accordingly. In the past, it was very difficult to perform
maintenance on AAARF in the Openwindows environment because the SunView windows usurped
the screen. With the new system, it is now possible to run AAARF while simultaneously analyzing
source code files. For users familiar with the Openwindows environment, interacting with Sun-
View windows has a feeling that is distinctly “unnatural.” This was always present with SunView
AAARF (and a constant source of comments like “Oh, well that’s certainly obvious.” drenched in
sarcasm) but has completely disappeared with X-AAARF. Although they were vigorously sought,

not a single negative comment specific to the user interface has been received.

The decision to use the XView toolkit appears to have been a good one. In general, the
toolkit proved very easy to learn. The XView programmers guide [10] and reference manual [17]
are well organized and complimentary. The reference manual was especially useful: once the basics

of a particular object were understood, the reference manual usually sufficed.

For the time being, the XView interface is sufficient. It provides access to the many advantages
of the X Window System and it is entirely adequate for the user interface needs of the AAARF

system. It is not clear how long this will last, althongh Sun appears committed to long term support

5-1

of XView. If this continues, the XView interface may never need replacing. The state of AAARI is
always of concern because it is by definition a system whose requirements are constantly changing
- that is the nature and reality of research. The simplicity, elegance, and shallow learning curve of

the XView toolkit are very desirable characteristics in such an environment.

The XView interface is not a solution to the larger problem of portability. XView is not widely
available and it is not yet clear whether it ever will be. Greater availability of XView will not solve
the portability problem unless the Sun Notifier system is included. or AAARF’s dependence on the
Notifier is somehow eliminated. This is not a simple problem - AAARF uses the Notifier for much
more than window event handling. Indeed, much of the inter-task communication control hinges
on the Notifier. The dependency on the Notifier for inter-task communication can be solved but

only at the expense of a fairly large redesign effort.

In many ways, portability is a non-technical issue. For AAARF’s intended uses at AFIT,
portability is a not an issue. If it is desired that AAARF be distributed outside of AFIT, then
portability 1s important. Distributing AAARF outside of AFIT is risky. There is no formal mecha-
nism at AFIT for supporting, maintaining, and distributing software. The AAARF thesis student
(assuming there 1s one) is the only individual capable of answering questions or solving problems
that might arise as a result distributing AAARF. and it is a singularly bad idea to burden this
individual with such a responsibility. AAARF could be distributed “as is” to interested users or

researchers with the understanding that no formal support is available.

In reality. the problems of configuration control and maintenance are much more pressing
issues. There is no AAARF “corporate memory™ at AFIT. New thesis students are largely re-
sponsible for teaching themselves AAARF. As the size and complexity of AAARF grows, this task

becomes more and more difficult.

-l
T
[3]

5.2 Recommendalions

5.2.1 AAARF Muaintenance Without a doubt. the overriding difficulty in this investiga-
tion was in understanding AAARF. There is precious little detailed documentation. Hours were
spent pouring over code and doing cxecution traces using diagnostic print statements. AAARF
could seriously benefit from better documentation. The programmers manual provides a high level
description of the client programmer interface with enough detail that users can implement a new
class with a minimum of understanding of AAARF’s control structure. There is no equivalent
description of AAARF’s control structure that would allow someone to make changes to the design

of AAARI with the same “ease.”

Currently, there are two manuals in the AAARF documentation set: the “AAARF User’s
Guide,” and the “AAARF Programmer’s Guide.” A valuable addition to this set would be the
“AAARF Maintenance Manual.” This manual should contain as a minimum the following:

e A graphical representation of the event handling structures.

e A detailed description of AAARF’s use of the Sun Notifier. This should be coupled with the
event handling item.

e A flow chart of the control structure that is driven by the event handling structure.
e An annot.ted, graphical representation of the major data structures.
e A description of the inter-module relationships as they rclate to the control structure,

s A graphical representation of the programmer interface discussed in the programmer’s guide.
This 1s not a client programmer issue, this information is necessary to fully understand the
control structure.

o A listing of the Unix commands commonly used in maintenance and debugging. For example,
the grep command is often used to locate the file containing a function or other item of interest.
o A detailed explanation of the AAARF Makefile facility.

o A flowchart of the network connection and management program PRASEBG. This will do as
a minimum. The ultimate goal is to restructure and simplify the network interface.

e A section discussing the PRATY instrumentation software, the communications libraries, and
the clock.

An explicit example of PRASE instrumentation. (This has been done, sce Appendix B.)

Some of the above information is available in the three AAARF theses. Some of it can be
found in the user’s and programmer’s guides, and some as comments in the source code. What is

lacking is a central repository for this critical information. A maintenance manual would solve this

problem, but this 1s a very complicated issue. This isn't rescarch. so the question becomes, “Who
should do it?” One possible answer is to have the AAARF thesis student(s) do it as a special study.
The value in doing this is obvious: it would prepare the individuals involved for research involving
AAARF and provide an improved training environment for future AAARF researchers. !'f AAARF
continues to grow, and this problem is not addressed soon, AAARF s usefulness as a classroom aid

and research platforin will be endangered.

5.2.2 AAARF Tramming A wmore formal process of training AAARF researchers must be
developed. The current process of encouraging students to “get mside the code™ is no longer
sufficient, AAARF is simply too large. This thesis cycle, the new AAARF thesis student was
assigned to the current student as part of a special study. This proved effective in helping the current
student pass along lessons learned, and many of the insights and tricks garnered during the course
of doing rescarch were passed along. There is little or no research value in this information. Instead,
it 1s the kind of peripheral knowledge that never makes it into a thesis paper or documentation
but i> so vital to the success of a project. (Examples include knowledge of Unix and C, system
quirks, shortcuts and tricks, LaTeX, etc.) This process can’t really be formalized in an academic

environment, but an informal process is better than no process.

5.2.3 Indvndually Windowed Views This is a very important requiremert. ‘The motiva-
tions for individual algorithm view windows were presented in Section 4.3.3.1. The individually
windowed algorithm views should be implemented at the “rst available opportunity. The original
AAARY design appears to have developed around the idea that an algorithm’s animation is the
central conceptual entity in describing an algorithm. In truth, it is only an artifact of the current
state of the algorithm. From the point of view of AAARF, an algorithm’s state is really the sum
of all the window states associated wi*y that algorithm, plus it's own internal state. Ideally. they

are all consistent. In practice, they are rarely in syne | ~cause the animation and the algorithm are

separate processes. Which window is considered the “controlling” window in such an environment

1s immaterial. The decision is really an implementation issue.

To implement this recommendation requires changes to the parent-child relationships between
the algorithm’s windows and changes to the event handling and control structures which manipu-
late and track the state of the algorithin window and the algorithm itsell. The best approach is to
make the Master Control Panel the base window for each animation class, and all other windows
subordinate. The necessary changes to the parent-child relationships between the Algorithm Win-
dow, the Master Control Panel, the Animation Recorder, and the Status panel were implemented
as discussed in Section 4.3.5. Because of the requirement not to make major design changes during
GUI replacement, no changes were made to the control or data structures. What remains is to
modify the control structures which manipulate the algorithm VIEW_STATE data structure and
the AAARF AAARF_STATE data structure and undo the event handling work-around described

in Section 4.3.6. Before starting, a careful analysis of the impact of doing this should be done.

5.2.4 AAARF as a Classroom Tool - The Client Programmer [nterface Currently, the
learning curve for animating an algorithm as part of a classroom requirement puts it heyond the
capability of most students. (A long term solution to this problem is discussed in Section 5.2.5.)
Analysis of the problem indicates that the real issues are graphics programming and interfacing
with AAARF. Students have the ability to desigh and implement algoritiims of moderate complex-
ity within a reasonable time (sorts, graph searches. traversals, ete). But. the additional task of
developing animation graphics and nicrfacing the algorithin and the graphics with AAARFE puts
this effort beyond that which could reasonably be expected in a ten week course. There is so much

to learn, in such a short amount of time, that the educational value would be jeopardized.

The near term solution is to develop a “student™ animation class which already incorporates
everyvthing needed for animation except the algorithm, which the user supplies at run time. This

requires the ability to do dynamic linking (such as that found in re-entrant OS routites and hi-

braries). The functionality to simulate this is built into AAARF in the forin of socket hased 1PC.
AAARF simply treats algorithms as socket based “data generators™ for it’s animation programs.
Conceptually, it's very simple, but The suggested procedure for implementing this is:

1. Identify the specific algorithm classes (as defined in[4:11-14]) that are required to support the
chosen curriculum.

2. Develop the necessary graphics routines for the chosen classes. This includes identifying the
Interesting Events (IEs) needed to support the classes and their associated actions on the class
data structures. It also means that the Master Control Panel and Status Panel functions to
control execution be developed. Included in this is the requirement to prompt uscrs for the
name and location of their algorithm. This is the responsibility of the “student”™ class.

3. Provide to the users the IEs, their definitions, and a brief description of their use.

4. Provide a method for interfacing the user developed algorithms with AAARF. This must be as
close to a “cookbook” recipe as possible, probably a Makefile in which users simply substitute
the name of their program for a “dummy™ name. This may well be the most difficult part of
the process.

The perceived method for using the “student™ class is:

1. start AAARF

2. from the AAARF main menu, select New algorithm Window —-> Student

-

on the “student” Master Control Panel, click-select Load Algorithm

-_—

on the poped up menu, enter the path and name of the algorithm

Maj

. once the algorithm is loaded, normal AAART interaction applies

Users can then experiment with instrumenting their code and not have to concern themselves with
writing graphics routines and interfacing with AAARF. This could be a very useful addition if the

goal of using AAARF in the classroom is to focuses on algorithm behavior.

5.2.5 A Formal Specification Language for Algorithm Animation The process described in
the preceding paragraph can be treated more formally, using the “student™ class as a baseline.
The Interesting Event concept can be used as a basis for the development of a formal specification
language to describe animations in terms of graphics operations on visual representations o! data
structures. ‘The expected benefits of such an hierarcical system include simplifving the process of
animating algorithms. and increased flexibility and expressiveness in animating algorithis. The

goal is to logically distill out of the animation process the necessity for users to write graphics

Graphics
Routines
GSL ol
Application . Animation
Program Generator i\AARF }
IESL > Augmented
Application
Program

Figure 5.1. Proposed environment for the development of a formal specification language for
algorithm animation.

routines, while still giving them the ability to specify and configure graphics entities. The ability to
abstractly specify and configure graphics entities is missing from the solution recommended in the
previous section. A prototype environment for the development and testing of a formal specification

language for algorithm animation is shown in Figure 5.1 (‘This prototype is due to Bailor [1]).

Formalizing the Interesting Event concept is based on the hypothesis that each AAARF class
can be treated as an application domain. A domain specific language can then be defined for
each class. The domain language describes the data. operations (i.e., productions). and allowable
states for the class. Two specification l»nguages are necessary: the Graphics Specification Language
(GSL) and the Interesting Event Specification Language (TESL). The GSL directs the mainpulation
of graphic entities and the IESL describes the state of the algorithm. The GSL should be domain
independent. while the IESL is domain dependent. An Anmimation Generator parses annotated
programs and produces two outputs: the Augmented Application Program (the instrumented algo-
rithm) and the Graphics Roufines (the animation process). Users interact with these through the

AAARF supplied class Master Control Panel.

If currently defined AAARF classes are treated as individual domains. then by definmition. cach
class’ set of 1Es forms a basis set for that class, from which all possible states for that algorithn

class can be formed. If this level of abstraction is too specific. then some subset of all the 1Es

o1
v

currently defined for AAARF can be used to describe broader classes. In any case, the 1Es already

defined for each class are a natural starting point in formulating a formal language.

Unfortunately, the SGL graphics operations are not so simple. Issues to consider are:

o Level of Abstraction or Icons Does the language manipulate points and lines, or higher level
objects like polygons.

e Static vs. Dynamic How i1s movement defined?
o Visibility How is scale defined? Color?

e Relationships Can relationships between objects be formalized? How does this affect move-
ment?

e Construction Can aggregates be formed? How does this affect movement and color? Visibil-
ity?
Currently, classes define their own graphics routines and register them with AAARF at link time.
Classes do not have simple access to each others graphics routines. A better approach is to build
into AAARF a basic graphic entity model and then allow users to choose, through the GSL, the

entities and relationships which best fit their needs.

The discussion thus far assumes that it is the user who defines the relationships between the
IESL and the GSL through the appropraite use of each language. Exactly how this is achieved is
not clear. In one scenario, the user selects from the GSL the necessary productions to implenient.
the desired graphics entities. Then, thiough some as yet undefined mapping process, the domain
specific IESL productions operate on the objects output by the GSL productions to produce the
desired effects on the screen. Various levels of observation are possible, depending upon the user

and the algorithm.

The intent is to provide a formal mechanism for animating algorithins. An interesting side
affect of such a system is that it is, in a sense, “reverse engineering.” Given an algorithm. what
formalisms are required to abstract the control to a higher level, e.g., a visual level where only
qualitative relationships are observed? This is an interesting problem because it appears to have

widespread application, not only in algorithm animation, but program visualization as well.

5-8

The worth of such a system is measured in 1t’s ease of use. It serves no purpose to take an
already difficult process and abstract it to a process at a higher level that is equally difficult. In this
regard, the GSL is likely to be the most difficult to formalize because the two primary requirements
for such a language — expressiveness and simplicity — are incompatible featurcs. Effective use of
the GSL depends upon users’ understanding of the domain and the associated domain-specific

algorithm animation environment.

5.2.6 AAARF Responsibility In a school which prides itself on it’s Software Engineering
program, it is an irony that no formal software Configuration Management program exists. This
issue affects not only AAARF, but, to my knowledge, every other research program at AFIT involv-
ing follow on software development. Someone has to assume the responsibility for Configuration
Management of AAARF. This is best done by a software engineer or analyst in a full time position.!
The motivation is very simple: without an effective configuration management program a lot of

research effort is either lost, literally, or wasted trying to restore previously functioning software.

5.2.7 The Future of AAARF In many ways AAARF has failed to live up to the expec-
tations of it's designers. AAARF is too complicated for really insightful aniiation development
as part of a classroom exercise, although AAARF is very useful as a pedagogical tool for studying
algorithms at an “observational” level. If use of AAARF as an expanded educational tool is a goal.
thei the recommendations of Section 5.2.4 can be implemented to solve this problen. Failing to
do so will likely result in continued non-use of AAARF for these purposes. This opinion is sup-
ported by the fact that no one outside of the two thesis students who developed AAARF have ever

nnplemented a new class.

The use of AAARF as an analysis tool for parallel computer performance monitoring is a

very delicate issue. There are other tools available, such as Paragraph. if the interest is solely

'T am keenly aware of the implicatious of this statement. If such an indivinal cannot be hired. then the only
alterantive is the AAARF thesis advisor. Nevertheless, research software is a valuable asset and should be treated
as such.

5-9

in performance monitoring (see Section 2.4.2.2, page2-9}. Whether Paragraph is “better” than
AAARF is a very complicated question. Certainly Paragraph is not as general in nature as AAARF:
it does not support algorithin animation, and it does not support on-line performance monitoring.”
However, AAARF’s parallel performance animation repetoire is not as complete as Paragraph’s. For
performance monitoring, AAARF is entirely dependent upon the PRASE execution trace software.
PRASE is non-portable; it runs only on the iPSC/2.3 It is possible to adapt PRASE for use with
other parallel computers, but it’s not clear that this is desirable. Another alternative is to modify
AAARF to accept PICL trace records (see Section 2.4.2.1, page 2-8). PICL is supported by ORNL
and i1s becoming something of a trace format standard, and PICL supports a number of parallel

computer platforms.

As pointed out in Section 1.2, page 1-4, AAARF is based on a very solid design. It is doubtful
other performance animation systems share this heritage. With the above in mind, there are two
possibilities:

1. Continue as is. The AAARF system is relatively stable and there is much that can be done
in the arena of parallel performance monitoring. But, there are problems with this option:
e The research content of much of this work is questionable.?

o The size and complexity of AAARF limits what can reasonably be done because so
much time and energy is expended in getting started. Resecarchers must first learn
the basic AAARF system, then the remote animation facilities, and finally the remote
instrumentation facilities. And, this assumes they are already familiar with Unix and C.

e The AAARF system is in a constant state of flux, limiting its usefulness to other re-
searchers. This is amplified by the lack of Configuration Management.

2. Abandon the parallel side of AAARF and concentrate on perfecting AAARF as an educational
tool and a research platforn: for formal animation specifications. Adopting this option (po-
tentially) sacrifices the ability to animate parallel algorithms. There are several advantages:

?Paragraph uses file input. AAARF is a direct connect or on-line system. Admittedly, there is currently no real
advantage to on-line mode over file input mode because network bandwidths are too narrow to allow animations to
run in any where near real time. This may not always be true. A long term goal for AAARF is to be able to run
animations interactively. in real time. This capability does not currently exist in AAARFE, but the basic functionality
to support it is in place.

'PRASE is being ported to the iPSC/R60, but this does nothing to enhance its portability. Intel is discontinuing
support of the iPSC/2 at the end of calendar year '92, so PRASE is still, effectively, a single system platform. The
two computers are so similar that only a recompile is required.

Y There are always tradeoffs in an academic environment between what is research and what is development. This
is a particular problem at AFIT because students are required to complete the program in 18 months, and extensions
are rare.

5-10

o Adopting Paragraph/PICL allows researchers to concentrate on using these tools for
analysis, rather than developing similar capabilities. The general trend in parallel com-
puters is to incorporate performance monitoring instrumentation and animation facilities
directly into the architecture and operating system. Some, like Intel, are using PICL, and
Paragraph. This knowledge weakens the motivation for continued in-liouse development.

¢ The potential for research in formal specifications for algorithm animation appears un-
limited. This is a new and exciting area and there is much that AAARIEs current
configuration has to offer, starting with the recommendations in Section 5.2.4.

e The use of AAARF as an educational tool has great potential if the previous item is
pursued. The system described in Section 5.2.4 could eventually be replaced by a more
formal method based upon formal specifications.

Which path to choose is a difficult decision. Both would be ideal. Unfortunately. to date, there
has only been one AAARF researcher per thesis cycle. To pursue both paths requires two peo-
ple. In light of the current sitnation regarding downsizing of the Air Force, this is not likely 1o
change. Much has been invested in AAARI’s parallel capabilities, but largely at the sacrifice
of AAARLEs contribution as an educational tool. This is unfortunate becanse both are valuable

research activities.

In the final analysis, the decision is not so much which avenue to pursue, it is more a question

of where to focus a dwindling resource.

Appendix A. A BRIEF Discussion of X

X was (is) intended to be a distributed, device independent user interface platform. It's
primary use is in the development of device independent (e.g. portable) Graphical User Interfaces
(GUlIs). X does not contain any particular user interface styles. Instead, it provides a set of device

independent tools from which any number and kind of user interfaces can be built.

X is based on the client-server model. The core of the X syvstem is the server. The server
(display in X-ese) allocates and manages all the necessary data structures required to support a
screen (output device in X-esc). There is one server per cpu, but a server can manage more than
one screen (analogous to a file server with diskless clients). Applications programs using the server
are known as clients. Any application which complies with the X protocol (an asynchronous byte-
stream protocol) can communicate with the server. Obviously, a server can connect to many clients.
but a client can also connect to more than one server. A client and server need not be on the same

machine, or even the same network.

The server provides the device independent interface to the platform on which it resides. A
specific version of the server must be installed for each platform. For example, in a networked work-
station environment, each workstation has a device dependent server running in the background

controlling the screen.

The lowest level of access to the server is directly through network packets and byte-streams.
This would be analagous to microcoding. Not recomnmended. The next level of interface is through
specific language libraries which provide a complete set of window management functions and
capabilities. This is the assembly language level of X. XLib is the €' language interface (there is
only one per language). Above the library level are toolkits. such as the Xt Intrinsics (also in C).
Xt is built on top of XLib. (There are a number of other Xt level interfaces to X Windows built
on XLib.) The highest level interface is what is generally known as a set of widgets. Widgets

are basically a collection of objects built using a toolkit and XLib which implement a set of user

A-1

interface functions. For example, menu buttons, file dialog boxes, scroll bars, etc. are typical
examples of widgets. Motif is a widget set. In general, a toolkit such as Xt provides a set of server
interface functions for managing windows and a set of widgets for user interface functions. While
the typical application may use the top three levels (down to XLib), most of the work is done at
the widget and toolkit levels. However, most programmers never actually deal directly with XLib
or Xt objects because the attributes associated with these objects are available through the widget

objects via inheritence.

Appendix B. A Simple Ezxample of PRASE Instrumentation - The Ring Program

B.1 [Introduction

This document presents a “stmple” example of how to instrument an iPSC/2 program for
animation with AAARF. The example program is the Intel supplied ring program. Read this
entire document before attempting to run the ring animation. Don’t be dismayed by the size of

this example. This is Unix - it’s supposed to be hard. If it was easy, it would be on a Macintosh.

This example is divided into four sections:

e OVERVIEW (B.2)

o Instructions for RUNNING THE ANIMATION (B.3)

o Instructions for BAILING YOURSELF OUT (B.4) when you lock up the system
o Instructions for INSTRUMENTING THE RING PROGRAM (B.5)

o SOURCE LISTINGS (B.6) for the ring program

Examples of other parallel programs which have been instrumented can be found in other directories

off the fusr2/aaarfDEMOS directory.

B.2 Qvuerview

The iPSC/2 fusr2/aaarfDEMOS/ring directory contains the C source and makefile for the
instrumented ring example. The intent is to provide a simple example of how to instrument a
hypercube program for animation with the AAARF Parallel Performance Views class. In this case
there is no AAARF class from which to run the ring program automatically. it must be started
manually on the cube. The directory should contain the following files:

e README
e host.c

e node.c

e makefile

e rhosts

B-1

The directory contains a modified version of the Intel ring demonstration program. The
ring demo has been modified to acommodate AAARF instrumentation. Ring count reporting has
been eliminated (just because, this is not necessary for AAARF instrumentation), and a terminate
message type has been added since the original version has no facility for gracefully terminating the
node program (which IS necessary for the AAARF data collection system to work properly!). The
original version of the ring program has facilities for multiple runs, which has also been removed.
The following description of the ring demonstration is taken from the Intel README file which

accompanies the ring demonstration program.

The host program loads the node program and prompts you for input as to the number of
times to go around the ring and the length of the message you want to pass around the ring.
Node 0 receives this information and sends a message of the desired length to the next node
(1). As each subsequent node receives the message, it sends it onto the next node in the ring.
After the desired number of rounds have been completed, it reports the time the message spent
“circling” the cube. To exit this program, enter a negative number when prompted for the

number of times to go around the ring.

B.3 Running the Animation

Before you can run AAARF and the ring program you must have accounts on at least one
workstation cluster on which AAARF is resident, as well as the Intel iPSC/2 Hypercube. AAARF
is currently available on olympus and scgraph. To run this example you need to (explained in detail

below):

copy the source to the cube and make executables, ¢.g. compile them,

get the cube,
start AAARF,

start the host program.

This program works on any size cube greater than zero without modification. You must

know what kind of math coprocessor your cube nodes have. Enter “make help” to determine the

B-2

appropriate make command to enter to build the correct executables. (This demo can also be run
without AAARF instrumentation by editing the makefile - remove the -DPRASE option wherever
it appears - and recompiling.) AAARF runs on your workstation, and the instrumented program
runs on the cube. They communicate over the network via sockets. Because of this, you MUST
follow very carefully the script described below. If you do not, you will likely lock up both your
workstation and the cube. Instructions on how to dig yourself out of such a situation are provided
later. Finally, AAARF prints certain information and diagnostic messages in the window from
which AAARF was started - you need to be able to see these messages to ensure that AAARF is

functioning properly.

Before running the animation, there are some preliminary steps you must take. First, the
ring program must be started manually from the cube. This means you have to open a window on
your workstation and rlogin, rsh, or telnet to the cube. AAARF connects to the cube using your
userid. For the connection to work properly, you must have a .rhosts file in your login directory.
If you don’t already have a .rhosts file in your login directory, copy the sample rhosts file in this
directory to your login directory (renaming it .rhosts). If the hostname of the workstation you are
running from is not in the file, add it. (You can get the hostname of your workstation by typing
“hostname” on the command line.) Edit the file to reflect your login name after each hostname
entry. (‘This will be quite obvious when you see the contents of the file.) Do all the editing on your
file. If you don’t want to edit on the cube (using vi) you can copy the file to your directory on the

workstation, edit it there, and then ftp it back to the cube.

In the steps that follow, you are asked to interact with both AAARF, running on your
workstation, and the ring demo. running on the cube. Once started, the cube program runs to a

holding point while you interact with AAARF. Do not be concerned, no data will be lost.

To run the ring animation: (C = on the cube, W = on your workstation)

1. (C) Create the host executable (host) and the node executable (node) from he source files
(host.c and node.c) to run on CX nodes (these must be copied from fusr2/aaarfDEMOS/ring

to the directory of your choice on the cube):

make cx <cr>

AAARF does not need to know where you put the ring demo.

2. (C) Get an 8-node cube named “ring”:

getcube -c ring -t8 <cr>

3. (W) Start AAARF:

aaarf <cr>

If the AAARF bin directory isn’t already in your path, the executables are in

Jolympus4/aaarf/bin.

You can prepend the complete path to vhe name of the program if the location of the exe-

cutable is not part of your current path environment variable. For example:

/olympusd/aaarf/bin/aaarf<cr>

will also execute AAARF. AAART can also be r'n on the scgraph cluster, use:

~cwright /aaarf/bin/aaarf.

4. (W) Ask for the AAARF Parallel Performance Views window

right-click/select “New Algorithm Window->Parallel Performance Views”

in the AAARF main window

[t is recommended that new users also show the Status Display. See step (6-W) for instructions

on showing the status of the animation.

B-4

Resize the window to a suitable size. You can move the animation window by dragging the
frame of the window with the left mouse button. You can siniilarly resize the window by

dragging any corner of the window with the left mouse button.
e Warning - If the diagnostic message
“BG: server connected”
fails to appear in the window from which you launched AAARF DO NOT PROCEED,
AAARF has failed to connect to the cube. (Be patient, AAARF is launching a remote

server program on the cube and waiting for it te respond - this may take up to a minuter,

or more if the network, the cube, or your workstation is busy.)
e Warning - If the error message
“BG: error binding socket: Address already in use”
appears, the problem can be one of two things:

{a) you have been running the ring demo and you wish to run it again - in this case the
system has not released (after the last run) the socket id AAARE uses. Wa't a fow
minutes and try again.

(b) you haven’'t been running AAARFE - there is nothing yvou can do about this one
except to try another workstation. The socket id AAARF needs is being used by

another process.
e Warning - If the rror message
“B(C: permission denied”

appears, there is a problem with the remote login. Check that you have copied the rhosts
file into your login directory and renamed it .rhosts. Also check to ensure that you have

correctly entered the hostname of your workstation, followed by your login name.

-

5. (C') Execute the host program:

6.

-1

host <cr>

the host program prompts for the number of times around the ring and the length of the mes-
sage you wish to pass. The diagnostic message “aaarf_clct connecting to <your workstation>"
should appear in your cube window. It may be interleaved with the input prompts, just ig-
nore it and answer the questions. AT THE SAME TIME, the following diagnostic messages

should appear in the window from which AAARF was launched:

“BG: trace socket connected”
“BG: alg socket connected”

“BG: command socket connected”

e Warning - if these diagnostic messages fail to appear, again DO NOT PROCEED. the
AAARF PRASE data collection system has failed to connect with vour workstation.
(Once again, this may take a while - AAARF is establishing the communications link
between the data collection system and the background process, PRASEBG, which is

running in the background on vour workstation.)

(W) If by some miracle you have managed to make it this far, you can start the animation by
left-clicking in the animation window with the mouse or by clicking on the “GO” button in
the master control panel. There may be a delay of a minute or more while AAARF catches up
with your program. You can monitor the status of AAARF by left clicking on the “Status”
button on the animation’s master control panel. If you select the status display. note that
the animation does not proceed until the “current trace time” catches up with the “next
record time.” It is probably best to use the Status Display the first few times you run the
ring demonstration because there can be pauses in the animation while the ring programs are

doing things which are not related to cube communication (such as opening files, etc.).

- (W) When the animation finishes, kill the animation window (the status display goes with

it automatically) by right-click/selecting “Quit™ from the master control panel's title bar. If

you wish to run the animation again with different parameters, wait a few minutes for the
system to release the socket id, and then ask for a new Parallel Performance View animation
window, as before. It is not necessary to wait until the animation finishes to kill it. If you
choose to kill the animation while it is still running you will have to kill the host program
and the data collection program on the cube host processor. See the section “Bailing Yourself

Out” below.

8. (W) Kill AAARF by right-click/selecting “Kill AAARF” in the AAARF main window’s title

bar.

B.4 Bailing Yourself Qut

There are several situations which can lead to workstation and/or cube lockup. The most
common error is trying to start the animation before the necessary communication connections
have been established. Whatever the cause, here are some suggestions for extricating vourself

from “terminal lockup”

First try to kill the animation window. If no menu pops up when you right click in the
animation window's menu bar, try killing AAARF. If you can’t kill AAARF you will probably have
to go to another workstation and remotely login to proceed. In any case, the animation window
and the AAARF main window may stay up on your terminal’s screen. If they do, there are still
AAARF related processes running which will have to be killed manually. DO NOT try to logout
and log back in — this may work, or it may leave you in worse shape, and there is no way predict the
outcome. Below are two command line sessions, one from the workstation, and one from the cube.
Type the ps commands, locate the appropriate process id’s, and issue the necessary kil command.
{These are much abbreviated versions of what actually appears as a result of entering these ps

commands.) The processes shown below may or may not show up when you issue the ps, however,

B-7

there will never be any more than what is shown below. Also, make sure that you release the cube.

lacertae:@™> ps -auxw | grep curight /* workstation */

ceright 17886 16:34 0:00 ps -auxw

ceright 17887 16:34 0:00 grep cwright

ceright 17880 16:33 0:00 /home/hawkeye2/cwright/X/aaarf/bin/aaarf

cwright 17881 16:33 0:00 /home/hawkeye2/cwright/X/aaarf/bin/PPerf 5

cwright 17882 16:33 0:00 /tmp_mnt/home/hawkeye2/cwright/X/aaarf/bin/PRASEBG 6
cwright 17883 S 16:33 0:00 rsh cube386 /usr2/aaarf/server lacertae
lacertae:@™> kill -9 17880 17831 17882 17883

wuwnwnx

% ps -elaf | grep cwright /# cube */

10 S cwright 7194 csh -c /usr2/aaarf/server lacertae
10 S cwright 7198 /usr2/aaarf/server lacertae

10 R cwright 7200 host

10 0 cwright 7244 /bin/ps -elaf

10 R cwright 7204 /usr2/aaarf/aaarf_clct 1000000

10 S cwright 7245 /bin/grep cwright

% kill -9 7194 7198 7200 7204

Cube process 7200, in this case, is the ring host process. All AAARF related processes must
be killed before AAARF can be run again successfully. If you restart AAARF and experience
difficulties, kill it, and go back and make sure that you have removed the server and aaarf_clct

programs from the cube, and the rsh program on your workstation, as well as the aaarf main

program.

B.5 Instrumenting a Simple Cube Program

The AAARF data collection system, PRASE, gets trace data by intercepting certain iPSC/2
system calls, extracting the information it needs, and then passing the call on to the intended
recipient. AAARF does not animate the host processor, only the node processors. However,
since the host program usually controls the overall exccution, it is necessary to include it in the
instrumentation process. You should be looking at the host and node listings for the

remainder of this discussion.

B.5.1 Instrumenting the host Program

B-8

The host program is responsible for starting the data collection program in the background.

#ifdef PRASE
/* start the data collection program */
system("/usr2/aaarf/aaarf_clct &");
#endif

The point at which aaarf-clct is started is critical: it must come after the cube has been
allocated, and it should come after any interactive dialogs your program has with the user. It

should also come before a startcube() call to prevent loss of data.

Your host program must wait until aaarf_clct finishes before it can finish. This is done by

reading a scratch file created by aaarf_clet just before it finishes. Insert the declaration

#ifdef PRASE
FILE *prase_ptr;
#endif

at the top of your main() routine, and the following code segment

#ifdef PRASE
printf ("\n\nWaiting for all PRASE data to be collected.\n");
while ((prase_ptr = fopen ("prase_end","r")) == NULL);
system ("rm prase_end");
fclose (prase_ptr);
#endif

at the end of the main() routine but BEFORE any calls to kidlcube(). No include files are needed.

Finally, the AAARF data collection system uses HOST_PID as the pid of the data collection
program, aaarf_clct.c. If you get a compile time warning that HOST_PID is being tedefined, you
also are using HOST_PID for your host program and will have to change it both in the host program

and any node program that communicates with the host.

B.5.2 Instrumenting tF node Program(s)

The node programs are somewhat more complicated. First, add the following include file

#ifdef PRASE
#include "prase.h"
#endif

to every node program or segment which makes system communication calls (csend, crecv, isend,

irecv, etc.).

For each unique node program (it should have a main() in it) add the following code segment

at the very top of main():

#ifdef PRASE
prase_procs[0] .num_pids = 1; /* number of processes for node 0 */
prase_procs[0].pids[0] = 0; /* process id(s) for node 0 */
prase_procs[1] .num_pids = 1;
prase_procs([1].pids[0] = 0;
prase_procs{2] .num_pids = 1;
prase_procs[2].pids[0] = 0;
prase_procs[3] .num_pids = 1;
prase_procs[3].pids[0] = 0;
prase_procs[4] .num_pids = 1;
prase_procs[4] .pids[0] = 0;
prase_procs[5].num_pids = 1;
prase_procs[5].pids[0] = 0;
prase_procs[6].num_pids = 1;
prase_procs[6].pids[0] = 0;
prase_procs[7] .num_pids = 1;
prase_procs[7].pids[0] = 0;

prase_lowest_node = 0;
prase_start_time 0;

praseinit();
#endif

If your program does not use pid=0 for the node process id’s, change the pid assignments to
match those which your program uses. If your system uses more than one process on any node,
change the number of processes for that node and add a process id line for each additional process,

making sure to assign the correct process id’s.

Add the following code segment to the end of the node program:

B-10

#ifdef PRASE
praseend(); /* notify aaarf_clct done */
#endif

There should be no system calls after this code segment, or the data will be lost. YOUR NODE
PROGRAM MUST TERMINATE VIA ITS OWN ACTION. If you use killcube() to terminate free
running node programs, they cannot be instrumented without the necessity of having to manually

kill AAARF at the end of each run.

B.5.3 Changes to the Makefile

Your makefile must be changed to reflect the location of the AAARF home directory on the

cube. Add the following definition:

AAARF = /usr2/aaarf,

and update your CLAGS to define PRASE as below:
CFLAGS = -0 -DPRASE -I$(AAARF).
The compilation line for the node program(s) must also include the library

aaarf_inst.a. Libraries must be the last object module in your object module list (if you have

one). For example:

node: node.o a.o b.o c¢.o $(AAARF)/aaarf_inst.a
cc $(CFLAGS) -o node node.o a.o b.o c.o $(AAARF)/aaarf_inst.a -node

See the makefile for the ring demo for an example. There is another example in the Carwash

directory.

B.6 Source Listings
fo

« This is a modified version of the ring program, which sends a message

= through each node of the cube in ascending order. The user can specify

= the length of the message and the number of times through the ring. The
*= modifications include elimination of ring count reporting and the addition

+= of instrumentation code for AAARF. Also, a terminate message is added to
= gracefully terminate the node programs so that AAARF data collection can
= can be completed. Rather than kill the ncde processes from the host, a

* terminate message is passed around the ring so that each node knows when
= to execute praseend(). When node 0 receives the terminate message from
* other than the host, it sends a terminate message to the host and then

= quits (All this is necessary because the ring program supplied by Intel

*= has the node programs in a infinite loop with termination done by the

= host program via the killcube() command.)

= It outputs:

- a) the time it took the message to go around the ring the specified
* number of times.
*/

char cpyright[]="Copyright (¢) 1989,1990 Intel Corporation”;

#include <stdio.h>

#define NODE_0 0 /= node id of node 0" »/
#tdefine NODE_PID 0 /+ node process id »/

##define Host Pid 1 /= host process id »/

#tdefine ALLNODES -1 /+ all nodes in the cube #/
#define ALL_PIDS -1 /+ all process id's in the cube */
#define INIT.TYPE 10 /= type of initial message »/
#define TERM_.TYPE 50 /* type of terminate message »/
#define COUNT_TYPE 40 /+ type of count message */
#define TIME_TYPE 60 [+ type of time message »/

#define INIT-MSG_SIZE (sizeof(int) = 2) /« size of initial msg in bytes »/
#define TERM_MSG _SIZE (sizeof(int)) /* size of terminate msg size »/
#define CNTMSG_SIZE (sizeof(int)) [+ size of count msg in bytes »/
#define TIME.MSG _SIZE (sizeof(long)) /* size of time msg in bytes =/

int msg_len, /= length of message =/

1, /* counter »/

ring.count, /= # of completed ring circuits »f
term_buf, /* buffer for terminate message from node 0 =/
msg_bufl2]; /+ message buffer »/

long time_buf; /» buffer for time information «/

float ring_time, /= time to go around ring =/

char CR = 13; /= ASCII Carriage Return code =/

main{)

{
#ifdef PRASE

B-12

FILE »prase_ptr;
#endif
printf(" “nNumber of times through the ring (0 or neg. value quits): ");
scanf (" %d”, &ring.count);
J+ quit the program if 0 or neg. »/
if (ring-count < 0)
exit{0);
/x get length of msg */
do {
printf{” Length of Ring message in bytes (0-65536): "),
scanf (" %d”", &msg.len),
} while {({msgJen < 0) || (msgden > 65536));
#ifdef PRASE /+ start the data collection program =/
system(” /usr2/aaarf/aaarf clct &"),
#endif
printf(” “nLoading the cube“n”);
setpid(Host _Pid);
load("node”, ALLNODES, NODE_PID);
/= set # of circuits to be sent =/
msg_buff[0] = ring.count;
/= set message length to be sent */
msg.bufi[1] = msg_len;
/= send message INIT.TYPE from
« msg.buff (length, # circuits)
= of length INIT MSG_SIZE
= to NODE_0 at NODE_PID »/
csend(INIT_TYPE, msg_buff, INIT MSG_SIZE, NODE_0, NODE_PID};
/= receive message TIME_.TYPE (time of circuits)
= into time_buf of TIM_MSG_SIZE bytes »/
crecv(TIME_TYPE, &time_buf, TIME_MSG SIZE),
/* scale time (milliseconds) »/
ring.time = (float)time_buf/1000.00;
printf(" “nRing time : 7%0.2f secs.“n”, ring_time);
[+ send terminate message to ring »/
csend{ TERM_TYPE, term_buf, TERM_MSG SIZE, NODFE_0, NODE_PID);
/* wait for node 0 to respond */
crecv(TERM_TYPE, &term_buf, TERMMSG_SIZE),
/= wait for aaarfclct to terminate »/
#ifdef PRASE
printf (" “n"nWaiting for all PRASE data to be collected. “n™);
while ({prase_ptr = fopen (" prase’end”,”r")) == NULL);
system ("'rm prase’end”);
fclose (prase_ptr),
#endif
printf(” Clearing the cube“n*n");
killeube(ALL_NODES, ALL_PIDS);
} /= end host program =/

B-13

/n

» This is the node program for the Ring example.

= Node 0 is the "controller” and waits for message from the host
» a) the number of times to go around the RING,

»= b) the length of the message to send around.

*

It then sends a message of the desired length to

node 1 and counts the current circuit # around the RING.

*

After each circuit node 0 sends a current ring count

message to the host.

*

When the circuits are completed, Node 0 sends

*

the Host the total time the message spent in the ring

All the other nodes patiently wait for a message and

*

then dutifully pass it on to the next node in the RING.
~/
char cpyright[J=" Copyright (c) 1989,1990 Intel Corporation”;

#ifdef PRASE

#include " prase. h”

#endif
#define HOST NID myhost() /* host node id «f
#define Host Pid 1 /* host process id =/
#define INIT.TYPE 10 /x type of initial message =/
#define NODE_TYPE 20 [type of node messages =/
#define TIME_TYPE 60 /= type of time message -/
#define COUNT_TYPE 40 /= type of count message »/
#define TERM_TYPE 50 /= type of terminate message «/
#define INITSIZE (sizeof(int) = 2) /= size of initial message =/
#define TERM_SIZE (sizeof(int)) [+ size of terminate msg size */
#detine TIME_SIZE (sizeof(long)) /* size of time message -/
#define COUNT SIZE (sizeof(int)) [+ size of count messaye «f
#define MAX_MSG_SIZE 65536 /= max. example message size =/
int i, /* loop counter »/

caunt, {= tmap storage for counter variable i «f

msg, /= message id for 1send to host uf

ring.count, /+« number of times to go around ring =/

msg_len, /= length of message «/

/= messay. buffer »f

msg_hufifMAX_MSG_SIZE /[sizeof(int)],

my _node, f+ node id returned by mynode()
my_pid, f* process id returned by mypid() »/
next _node, /= next node in ring #/

next_pid, /* next process in ring +/

num_nodes,

long msg_type. /* type of message reccived »f
start _time, f+ clock reading at start time »f
ring_time, /= time spent in ring «/

B-14

main{j {
my.node = mynode{); /= get node number »/
my.pid = mypid(); /= get pid «/

#ifdef PRASE
prase_procs{0].num_pids = 1.

prase_procs[0].pids[0] = 0;

1}
—_

prase_procs{1].num._pids

prase.procs{1].pids{0] = 0;

prase.procs[2].num_pids

prase_procs[2] pids{0] = 0;

Il
—

prase_procs(3].num_pids

prase_procs(3).pids[0] = 0

prase_procs[4].num.pids = 1,

o

prase_procs{4].pids[0] =

prase_procs{3].num_pids = 1;

2

prase_procs(5].pids[0] =

I
—

prase_procs[6] num_pids

f=l

prase_procs[6] pids[0] =

it

prase_procs{7] num_pids

prase.procs(7).pids[0] = 0;

prase_lowest _node = 0,

prase_start time = 0;

prasewnt(),

#endif

num.nodes = numnodes(); /=get number of nodes in cube =/

next.node = (my.node + 1) % num.nodes; /= calc the next node # in ring =/

next_pid = my_pid, /+pid of next ring node in ring x/
if (my.node == 0) { /+for root node only /
for (.} {

/+ wait for message from host =/
cprobe(—=1);
/= get message type f
msg_type=infotype(),
/= check type for TERM or INIT =/
iimsg_type == INIT.TYPE){
/+ recv. # of circuits and msg size of
= INIT.TYPE INITSIZE bytes to msg_buff »/
crecv(INIT_TYPE. msg_buff, INIT SIZE)

Jeget circuits and msg length =/

f

ring-count = msg_buff[0).
msg.len = msg_bufi{l]:
[+ start timing =/

start_time = mclock(),

f+ send msg ring_count times =/
for(i = 1.1 € ring.count; 144) {

f+ send msg_buf to the ring of

» NODE_TYPE length msg_ien to

B-15

« next_node pid next.pid =/
csend(NODE_TYPE, msg_buff, msg_en, next.node, next_pid);
/= walt to receive the message »/
crecv(NODE_TYPE, msg.buff, msglen),
/= be sure that last message has been
= sent so that count can be modified.
= If not, wait =/
} /= end ‘for’ sending messages to ring =/
/= calculate the time for circuits =/
ring_time = mclock() — start.time;
/= send the time msg, of TIME_TYPE
* size TIME_SIZE to the host pid Host_Pid */
csend(TIME_TYPE, &ring_time, TIME_SIZE, HOST_NID, Host_Pid);
} /= end if INIT.TYPE »/
else { /= assume TERM_TYPE »/
/* receive TERMINATE from host +/
crecv(TERM_TYPE, msg.buff, TERM_SIZE),
/= send TERMINATE to next node =/
csend(TERM.TYPE, msg-buff, TERM_SIZE, next_node, next_pid);
/= wait for TERMINATE from last node «/
crecv(TERM_TYPE, msg_buff, TERM_SIZE);
/* send TERMINATE to hosi «/
csend{ TERM_TYPE, msg-buff, TERM_SIZE, HOST_NID, Host_Pid);
/* quit loop =/
break:
}/* end else TERM.TYPE »/
}/* end for loop for root node 0 */
} /« end node 0 code */
else { /+ all other ring nodes execute this code »/
for (i) {
/= wait for message from previous node x/
cprobe(—1);
/= get message type »/
msg.type=infotype();
/= check for type NODE or INIT »/
if(msg-type == NODE_TYPE){
/= wait to receive message of NODE_.TYPE
* into msg.buf of MAX_MSG SIZE bytes »/
crecv(NODE_TYPE, msg_buff, MAX_MSG _SIZE);
msgen = infocount();
/* send message on to next node in ring =/
csend(NODE_TYPE, msg.buff, msg.len, next_node, next.pid);
}/* end if NODE_TYPE »/
else { /= assume TERM.TYPE »/
/» send TERMINATE to next node +/
csend{ TERM_TYPE, msg_buff, TERM_SIZE, next_node, next_pid);
[+ quit loop =/
break;
}/* end else TERM_TYPE »/
} /= end for loop non-root node code »/
} /#+ end non-root node code »f
#ifdef PRASE

B-16

praseend(); /* notify aaarfclct done «f
#endif

}/* =nd node program =/

#
Makefile for building C host and node applications for the Ring demo.

#

help:
@echo
@echo " You must specify the type of node you wish to build a node”

@echo ”executable for, choose one of the following:”

Aecho

@echo ” make cx (for 386 nodes with 387 coprocessors)”
@echo ” make 5x (for 386 nodes with SX coprocessors)”
@echo " make rx {for i860 nodes)”

@echo

AAARF = /wr2/aaarf

CFLAGS = -0 -DPRASE -i$(AAARF)

cx: host node #Use default compile and link flags

sX:
make host
make "CFLAGS = -O -DPRASE -1$, AAARF) -sx” "LDFLAGS=-sx" node

rx:
make host

make "CFLAGS = -0 -1860” "LDFLAGS=-1860" node

}

host: host.o
cc $(CFLAGS) -0 host host.o —host

node: node.o $3(AAARF)/aaarfinst.a
cc $(CFLAGS) —o node node.o 3(AAARF)/aaarfinst.a $(LDFLAGS) —node

clean:

rm host node host.o node.o

10.
11.

12.

13.

14.
15.

7.

18.

19.

20.

21.

Bibliography

. Bailor, Paul D. Personal Communications. Wright-Patterson AFB, Dayton OH, November

1992.
Brown, Marc H. Algorithm Aniniation. C~mbridge, Massachusetts: The MIT Press, 1487,

Diane T. Rover. Visualizing the Performance of ZPMD and Dala-Parallel Programs. ‘Technical
Report, Lansing, MI: Michigan State University, August 1992.

. Fife, Keith C. Graphical Representation of Algorithmic Processes. MS thesis, School of Engi-

neering, Air Force Institute of Technology (AU, Wright-Patterson AFB OH, 1989.

. Fife, Keith C and Edward Williams. The .1AARF Programmer’s Guide.. Air Force Institute

of Technology, December 1990.

. Fife, Keith C and Edward Williams. The AAARF Users's Guide.. Air Force lnstitute of

Technology, December 1990.

. Francioni, J and Diane T. Rover. “Visual-Aural Representations of Performance for a Scalable

Application Program.” Proceedings of Scalable High-Performance Computing Conference. 433
- 440. 1992.

. Geist, G. A., et al. PICL: A Portable Instrumented Commaunicativn Library. Technical Report,

Mathematical Sciences Section, Oak Ridge National Laboratory, 1992.

Heath, Michael T. “Visual Animation of Parallel Algorithms for Matrix Computations.” Pro-
ceedings of the Fifth Distributed Memory Compuling Conference. 1990.

Heller, Dan. XView Programming Manual. Sebastopol CA: O’Reilly & Associates, Inc, 1991.

Hotchkiss, Robert S and Cheryl L Wampler. “The Auditorialization of Scientific Information.”
Proceedings of Supercomputing "91. 453 - 461. 1991.

Kernighan, Brian W. and Dennis W. Richie. The C Programming Language. MA: Prentice
Hall, Inc, 1988.

Lack, Michael D. A. Enhanced Graphical Representalion of Parallel Algorithmic Processes.
MS thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB O, December 1991.

MasPar Computer Corporation. MasPar MP-1 Hardware Manual, September 1990.

Naps, Thomas L. *“Algorithm Visualization in Computer Science Laboratories,” SIGCSE
Bulletin, 22(1):105-110 (1990).

. Open Software Foundation, Englewood Cliffs, New Jersey. OSF/Motiff M Programmer’s

Guide, 1990.

Raalte, Thomas Van, editor. X View Reference Manual. Sebast— ol CA: O'Reilly & Associates,
Inc, 1991.

Rubin, Robert v., James Walker II and Eric Golin. “Design and Implementation of Program-
ming Environments in the Visual Programmers Workbench.” Froceedings of the 14th Annual
International Computer Software and Applicaltons Conferencc. 547-554. Piscataway, NJ:
IEEE Press, 1990.

Shimomura, Takao and Sadahiro Isoda. “Linked-List Visualization for Debugging,” IELE
Software, 8(3):44-51 (May 1991).

Stasko, John T. “Simplifying Algorithm Animation with TANGO.” Proceedings of the 1990
IEEE Workshop on Visual Languages. 1-6. Piscataway, NJ: IEEFE Press, 1990.

Sun Microsystems, Inc. Network Programming, 1990.

BIB-1

22.
23.
24.
25.
26.
27.
28.

29.

30.
31.

Sun Microsystems, Inc.
Sun Microsystems, Inc.
Sun Microsystems, Inc.
Sun Microsystems, Inc.

Sun Microsystems, Inc.

Open Windows Version 2 Release Noles, 1990.
Programming Utililies and Libraries, 1990.
SunOS Reference Manual, 1990.

SunView Programmer’s Guide, 1990.
SunView System Programmer’s Guide, 1990.

SunSoft, Div of Sun Microsystems. OpenWindows'™ Version 3 for SunOS™™ 4.1.r, 1991.

Wernhart, Heidemarie and Rolan Mittermeir. “The HIBOL-2 Environment: A Basis for Visual
Programmin of Business Objects,” Journal of Systems and Software, 12(2):157-165 (May

1990).

Williams, Edward M. Graphical Representation of Parallel Algorithmic Processes. MS thesis,
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,

December 1990.

Williams, Edward M. Personal Communications. Los Angeles AFB, Los Angeles CA, 1992.

Young, Douglas A. Window Systems Programming and Applications with Xt. Englewood
Cliffs, New Jersey: Prentice Hall, 1989.

BIB-2

Vita

Captain Charles R. Wright, Jr. was born on March 7, 1953 in Savannah, Georgia. He
graduated from Wayland Union High School in Wayland, Michigan in 1971. He entered the Air
Force on July 21, 1971. He received a Bachelor of Science in Electrical Engineering from New
Mexico State University in May of 1986. He received a commission upon graduation from Officers
Training School in August of 1986, and was assigned to the Air Force Materials Laboratory, Wright-
Patterson AFB, Ohio where he worked as a computer research scientist with the Manufacturing
Research Group. He entered the School of Engineering, Air Force Institute of Technology in May,

1991. He graduated with a Masters in Computer Science in December, 1992.

Permanent address: 411 Round Lake Road
Caledonia, Michigan 49316

VITA-1

| Form Acoroved
| REPORT DOCUMENTATION PAGE e s
!
PEAlaEE Y Ty Lt ATt 6 29T Mag Ty v e TorILr ler Sprme, T L3I TRt me st TR B P nelr LT TS Pet.T ML entiny 2t

T iNe Jiner gyoent e
CS ARGty LTy et o
It 000833

AT IAtArmALCN seng L dmmeants 1eQaaing My DUl

} e 1 th £-€UNQ ING "Bvirwir the il 7
ACLLMG TPIS DUrGEN 1) VASRIPIION R3TAUArTars sReriey, irncTrate S90 At rmanen

2 @ g tre X e ot M nggement (nd 3ud-et, Piceracra degueton Project 37043 R8)

1. AGENCY USE ONLY .Laave dilank) 2. REPORT DATE 3. REPORT TYPE A_ND DATES CCOVERED
December 1992 Master’s Thesis

13, TITLE AND SUBTITLE S. FUNDING NUMBERS
X-AAARF An X Windows Version of the AFIT Algorithm Animation Re-
search Facility

%

5. AUTHCR(S)
. Charles R. Wright, Jr., Captain, USAF

7. OEIFCRMIMG 2RGANIZATICN NAME(S) AND ADDRESS(ES) 3. PERFCRMING CRGANIZAT.CH

. . REPCAT NUMBSER
F te of WP! 3-6583
Air Force Institute of Technology, WPAFB OH 45433-6 AFIT/GCS/ENG/92D-22

9. SPONSORING MCNITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPCNSORING MONITORING

WL/AAAA-2, Model Based Vision Laboratory AGENCY REPCRT NUMBER
Target Recognition Branch, Mission Avionics Division,
Avionics Directorate, Wright Laboratory
Wright-Patterson AFB, OH

11, SUPPLEMENTARY NOTES

12a. DISTRISUTICON . AVAILABILITY STATEMENT 12b. DISTRIBUT!ON CODE
Approved for public release; distribution unlimited

112, ABSTRACT (Miximum 200 words)

Abstract

The AFIT Algorithm Animation Research Facility was developed by the Air Force Institute of Technology
(AFIT) as a teaching aid for data structures and algorithm design of sequential processes. However, AAARF’s
unique design makes it particularly suitable for the animation of algorithms running on remote systems. In
particular, an extensive set of parallel performance animations has been developed for the Intel iPSC/2
Hypercube for parallel program analysis and performance optimization.

The AAARF system was originally developed using the Sun Microsystems’ SunView”™ windowing system.
Recent advances in Graphical User Interface (GUI) technology combined with Sun’s adoption of the X Window
System as their workstation window environment, has necessitated the replacement of AAARF’s GUI with a
modern, X-based user interface.

This report describes the GUI replacement process, starting with selecting a GUI toolkit, designing and
implementing the new user interface, testing, and finally the results of implementing the new user interface.
Also included is a discussion of several changes/enhancements to AAARF which were necessary before the
GUTI replacement process began.

i

14. SUBJECT TERMS 15. NUMBER OF PAGES
112
16. PRICE CODE

Algorithm Animation, Visualization, X Windows System, XView, Parallel Process-

| ng
i
17. SECURITY CLASSIFICATION J§18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-3500 Stardarag ~o'm 298 (Rev 2-39.

Progcr D#g Cy ='¢% Stg [39-'3
29832

